Respuestas urbanas al cambio climático en América Latina

Roberto Sánchez Rodríguez
Editor
Respuestas urbanas al cambio climático en América Latina

Roberto Sánchez Rodríguez
Editor
La presente publicación se elaboró en el marco del Memorando de Entendimiento entre la Comisión Económica para América Latina y el Caribe (CEPAL) y el Instituto Interamericano para la Investigación del Cambio Global (IAI). Los autores agradecen a la Fundación Nacional de Ciencias de los Estados Unidos, que ha patrocinado los eventos y esta publicación.

La coordinación general estuvo a cargo de Holm Tiessen, Director Ejecutivo del IAI, Marcella Ohira, Directora de Desarrollo de Capacidades del IAI y Joseluis Samaniego, Director de la División de Desarrollo Sostenible y Asentamientos Humanos de la CEPAL, así como de Ricardo Jordán y Cristiane Carvalho, Jefe de la Unidad de Asentamientos Humanos y consultora, respectivamente, de esa misma División.

Los autores expresan su agradecimiento especial a Roberto Sánchez Rodríguez por su colaboración como editor del libro. También reconocen los valiosos insumos de Cristiane Carvalho, Cecilia Conde, Ricardo Jordán, Ana María Murgida, Daniel Pabón, Patricia Romero Lankao, Landy Sánchez y Roberto Sánchez Rodríguez.

En la preparación de los capítulos se contó con la colaboración de João Alves, Fernando Aragón, Freddy Arteaga, Fernando Briones, Natalia Brutto, Manyu Chang, Laura Dawidowski, Laura Frasco, Claudia Guebel, Jorgelina Hardoy, Kerstin Kreilenberg, Claudia Leite, Ignacio Lorenzo, Francisco Martínez, Diana Motta, Rafael D’Almeida Martins y Claudia E. Natenzon. Asimismo, los autores agradecen a Andrea Lampis, Jorge Dehays y Pablo Sierra por su asistencia en la revisión de los capítulos.

Las opiniones expresadas en este documento son de exclusiva responsabilidad de sus autores y pueden no coincidir con las de las organizaciones participantes.
Índice

Prólogo ...7

I. El cambio climático y las áreas urbanas de América Latina: a manera de introducción
 Roberto Sánchez Rodríguez..9
 A. La importancia del cambio climático para la planificación de las áreas urbanas de América Latina..11
 B. Elementos para el desarrollo de enfoques operativos..13
 1. Responder al cambio climático en el marco del desarrollo local14
 2. El papel de la planificación ...15
 3. La puesta en práctica de las acciones ..16
 4. Fortalecer las capacidades locales ..16
 5. Planes inclusivos ...16
 6. El papel de la información ..17
 7. El marco normativo ..17
 8. Estrategias para garantizar recursos ..17
 9. Seguimiento y evaluación ..18
 10. Estrategia de comunicación y difusión ...18
 C. Estructura de esta publicación ...18
 Bibliografía ..20

II. La importancia de la información climática para la planificación del crecimiento y el desarrollo urbano
 Cecilia Conde, Daniel Pabón y Roberto Sánchez Rodríguez..25
 A. Aspectos hidrometeorológicos y climáticos ...25
 B. El clima urbano y las islas de calor ..29
 C. El cambio climático ..32
 D. Fuentes de información climática y sugerencias útiles para facilitar el acceso a ellas ..37
 Bibliografía ..39

III. El papel de las áreas urbanas en la mitigación de los gases de efecto invernadero
 Landy Sánchez, Cristiane Carvalho y Ricardo Jordán ..41
 A. Población y crecimiento económico: ¿aumento de emisiones?42
 B. Los inventarios de emisiones: calcular para reducir ..44
C. Transportes y uso del suelo: una dinámica indivisible.................................47
D. La demanda energética de las zonas urbanas y la reducción de las emisiones asociadas a dicha demanda...53
E. Hacia una nueva institucionalidad para la mitigación eficaz de emisiones GEI en el ámbito urbano..60
F. Consideraciones finales..65
Bibliografía ..66

IV. Vulnerabilidad y adaptación al cambio climático
Roberto Sánchez Rodríguez...71
A. Introducción ...71
B. Prevención, gestión y reducción de desastres hidrometeorológicos y climáticos........73
 1. El Marco de Acción de Hyogo (MAH)...74
 2. Otros enfoques operativos para la gestión del riesgo de desastres76
 3. La reducción de la vulnerabilidad en el contexto de la reducción del riesgo de desastres y el cambio climático..77
 4. Marco analítico ...78
C. De la vulnerabilidad a la adaptación ...88
D. Herramientas metodológicas para el desarrollo de enfoques operativos aplicables a la construcción de un proceso de adaptación96
 1. La etapa del análisis ...98
 2. La etapa del diseño ..99
 3. La implementación ..101
 4. Ejemplos ..103
E. Consideraciones finales..109
Bibliografía ..110

V. Desarrollar capacidad de respuesta urbana a la variabilidad y el cambio climático
Patricia Romero-Lankao, Natalia Brutto, Manyu Chang, Jorgelina Hardoy, Rafael D’Almeida Martins y Kerstin Krellenberg..119
A. Introducción ..119
B. Definir el problema y diseñar las medidas de política120
C. Descentralización, gobiernos locales y cambio climático............................124
D. La capacidad institucional de respuesta ...125
 1. Redes y estructuras administrativas ...127
 2. Marco jurídico ...128
 3. Producción y uso de información científica ..130
 4. Participación ciudadana ..131
E. Conclusiones ..132
Bibliografía ..133

VI. El aire en la agenda pública: el caso de la Ciudad Autónoma de Buenos Aires
Ana María Murgida, Claudia F. Guebel, Claudia E. Natenzon y Laura Frasco137
A. Introducción ..137
B. Aspectos teórico-metodológicos...138
C. El aire en la agenda pública de la Ciudad Autónoma de Buenos Aires139
 1. Recorrido histórico ..139
 2. Recorrido político ..142
D. Interacción ciencia-política: reflexiones finales..152
Bibliografía ..154
Índice de cuadros

Cuadro II.1 Composición de la atmósfera, incluidos los componentes observados cerca de la superficie en áreas urbanas ...26
Cuadro II.2 Los escenarios de emisiones (IEEE) ..34
Cuadro II.3 Resumen por sector de los principales impactos proyectados, debidos a cambios en el clima y a fenómenos meteorológicos extremos durante el siglo XXI (sin tener en cuenta la capacidad de adaptación)36
Cuadro II.4 Impactos incrementales del cambio climático y riesgos para los habitantes y sistemas urbanos ..37
Cuadro II.5 Resoluciones espaciales y temporales: tipos de datos y fuentes ...38
Cuadro III.1 Medidas de mitigación en los transportes ...49
Cuadro IV.2 Herramientas para la evaluación de la vulnerabilidad socioeconómica ...85
Cuadro IV.3 Lista de datos que se han de tener en cuenta en el estudio de la vulnerabilidad ..88
Cuadro IV.4 ¿Cuál es la diferencia entre sobreponerse y adaptarse a un evento climático? ..89
Cuadro IV.5 Tipos de amenazas en curso y medidas de adaptación ..90
Cuadro IV.6 Estructura de la guía metodológica de ONU-Hábitat ...97

Índice de gráficos

Gráfico II.1 Bogotá: efectos de la variabilidad climática..28
Gráfico II.2 Esquema de la isla de calor ...29
Gráfico II.3 México, D.F.: número de olas de calor por decenio (izquierda) y número de episodios superiores a 30 mm de precipitación máxima en 24 horas por decenio (derecha), Observatorio de Tacubaya durante el periodo 1877-2009 ...31
Gráfico III.1 América Latina: emisiones de CO₂ per cápita y urbanización, por países, 2008 ...43
Gráfico III.2 Emisiones de CO₂ a nivel mundial según distintas trayectorias socioeconómicas ...44
Gráfico III.3 Emisiones de CO₂ del sector de los transportes en los países seleccionados ...47

Índice de diagramas

Diagrama I.1 Interacciones entre las áreas urbanas y la variabilidad y el cambio climáticos ...14
Diagrama II.1 Impactos potenciales en función del grado de cambio climático ...36
Diagrama III.1 Santiago: Esquema de modelación de un sistema urbano ..53
Diagrama IV.1 América Latina: visión integrada de la prevención y la reducción del riesgo de desastres y la adaptación al cambio climático en áreas urbanas ..73
Diagrama V.1 Capacidad institucional de respuesta: marco analítico ...126

Índice de recuadros

Recuadro III.1 Elementos que se han de tener cuenta para la confección de inventarios de emisiones ..46
Recuadro III.2 Barranquilla, Colombia: Transmetro BRT (Bus Rapid Transit) ...51
Recuadro III.3 Santiago: modelo integrado de uso del suelo, transportes y emisiones52
Recuadro III.4 Reducir la demanda energética...54
Recuadro III.5 Áreas de regulación energética en edificaciones ..55
Recuadro III.6 Las políticas urbanas tradicionales y el cambio climático.
 El caso de los residuos sólidos en el Brasil...58
Recuadro III.7 Chile: el papel de los actores sociales en una iniciativa de mitigación
 del cambio climático en Tocopilla, Región de Antofagasta61
Recuadro III.8 Instrumentos jurídicos e institucionales de la política de cambio climático
 del estado de São Paulo...64
Recuadro IV.1 Medidas sugeridas por el Programa de las Naciones Unidas
 para el Desarrollo con vistas a la preparación de planes y
 programas de adaptación...97
Recuadro IV.2 Medidas con beneficios rápidos y poco que lamentar
 (“quick win-low regret”) para la adaptación al cambio climático101
Recuadro V.1 ¿Por qué hay más medidas de mitigación que de adaptación?121
Recuadro V.2 San Fernando (provincia de Buenos Aires): un ejemplo de
 gestión local del riesgo...122
Recuadro VI.1 Actores sociales urbanos que participan en la cuestión del aire143

Índice de Imágenes

Imagen II.1 Los efectos de una granizada sobre la ciudad de Bogotá el 5 de noviembre
 de 2007 (David Osorio/El tiempo) ejemplifican el impacto de
 los fenómenos meteorológicos extremos en la ciudad...27
Imagen II.2 Gradientes de temperatura en el interior del espacio urbano30
Prólogo

En esta publicación se aborda la relación cada vez más significativa que existe entre las ciudades y el cambio climático. Esta relación es ambivalente y presenta múltiples dimensiones y áreas prioritarias en distintas escalas, desde la local hasta la global, pasando por la regional. Por un lado, las emisiones de gases de efecto invernadero de las ciudades constituyen el 67% de las emisiones mundiales y la energía que demandan asciende al 80% del total. Por otro lado, como centros de producción las ciudades generan el 70% del PIB mundial. Estas cifras no pueden ignorarse y sitúan a las ciudades a la altura de otros sistemas socioambientales por su impacto sobre el clima, de modo que a los efectos de mitigación deben evaluarse sus emisiones, productividad y vulnerabilidades.

Sin embargo, el cambio del clima y el aumento de su variabilidad también afectan a las ciudades de manera particular y ponen en riesgo el bienestar de las poblaciones. Por ejemplo, cuando las olas de calor asociadas a un clima cambiante coinciden con las islas de calor de las ciudades, los efectos de ambas se acumulan. Si los extremos de temperatura persisten durante semanas, los impactos sobre la salud pública resultan especialmente graves. Estas afirmaciones ya no son hipótesis: constituyen experiencias verificables. Las ciudades del interior del continente han sufrido temperaturas extremadamente altas, posiblemente a consecuencia del cambio de la cobertura de la tierra por la expansión agrícola regional, que ha alterado el equilibrio energético entre la tierra y la atmósfera.

Los desastres hidrometeorológicos también ponen en riesgo el desarrollo y la calidad de vida en las ciudades. Estos eventos son muy heterogéneos y pueden tener un alcance marcadamente local o regional. En el caso del oeste de América Latina, el fenómeno climático de El Niño provoca un déficit de precipitaciones y una mayor frecuencia de incendios, mientras que bajo los efectos de La Niña se incrementan las lluvias, las inundaciones y los deslizamientos de tierra. Por otra parte, en el sudeste del continente el aumento de la frecuencia e intensidad de las precipitaciones asociadas con las “sufridas” provoca inundaciones desastrosas.

En el abordaje de estos problemas se deben contemplar las distintas dimensiones de la adaptación y la mitigación, a fin de integrarlas y transformarlas en acciones que respondan a las necesidades locales y globales. Así, por ejemplo, las políticas globales de mitigación postulan que hay que concentrar las viviendas y las actividades urbanas para reducir el transporte y, con él, las emisiones. Así las ciudades serían más eficientes. Sin embargo, desde una perspectiva local, cuanto más densa es la infraestructura urbana, menos espacios verdes incluye, lo que favorece el efecto de isla de calor, que origina, entre otras cosas, un mayor consumo de energía por el uso de acondicionadores de aire. Además, con una infraestructura más densa aumenta la proporción de terrenos sellados, lo que contribuye a una mayor incidencia de inundaciones por falta de absorción del suelo. Con esto se aumenta aún más la vulnerabilidad de las áreas urbanas al cambio climático. En las que presentan esas características debe considerarse la incorporación de infraestructura verde (como parques, calles arborizadas y edificios verdes) que ofrezca una amplia gama de servicios ecosistémicos.
Así pues, este documento no se limita al diagnóstico, sino que propone también una reflexión sobre las políticas globales de mitigación y los efectos del diseño urbano, así como de las políticas locales de gestión para mejorar la calidad de vida de los habitantes de las ciudades y reducir los efectos de la urbanización sobre el clima.

Las iniciativas de adaptación y mitigación del cambio climático deben considerarse como un proceso, de modo que las medidas puedan mejorarse sobre la marcha y se vayan corrigiendo errores y optimizando las experiencias. Si se pretende que estas iniciativas sean realmente eficaces es preciso que estén acompañadas de planes y programas destinados a reducir la vulnerabilidad social, en el contexto de una planificación integrada de las áreas urbanas. Para la gestión política es importante cumplir con el compromiso de atender el bienestar y la salud de quienes trabajan y viven en la ciudad. Pero, al mismo tiempo, hay que asumir la responsabilidad global de la mitigación del cambio climático. Estos dos compromisos requieren políticas y estrategias de comunicación y educación pública distintas. Por ejemplo, en lo relativo a la calidad del aire los gobiernos nacionales están destinando recursos económicos y científicos para cuantificar y reducir las emisiones de gases de efecto invernadero, en detrimento de la medición de otros contaminantes que tienen un impacto directo sobre la salud humana en las ciudades contaminadas.

El rápido crecimiento urbano, sumado a una urbanización precaria y no planificada y a los cambios climáticos mundiales, plantea un desafío para los gestores. El objetivo es claro: reducir las contribuciones al cambio climático y, al mismo tiempo, mejorar la calidad de vida urbana a través de medidas que aumenten la resiliencia de las ciudades, disminuyan su vulnerabilidad y, de definitiva, prevengan los riesgos asociados para sus habitantes. Integrar la adaptación al cambio climático, la mitigación de sus efectos y la reducción de la vulnerabilidad social en la planificación urbana requiere buscar inversiones que contribuyan al desarrollo local mejorando, por ejemplo, el transporte público, la eficiencia térmica de las construcciones, el drenaje pluvial y el saneamiento de residuos. Esa gestión se articula con otros niveles de gobierno (departamentales, provinciales y nacionales) en torno a la administración del uso de la energía, la tecnología y la regulación del transporte y el desarrollo. La interacción entre los diferentes niveles depende del sistema legal de cada país. En este contexto, las oportunidades para la descentralización de la toma de decisiones son importantes porque las prioridades son diferentes en las distintas escalas espaciales.

La complejidad de reducir los riesgos climáticos, mejorar la calidad de vida urbana y aumentar la conciencia pública sobre las causas y efectos de la contaminación local y global exige un trabajo multidisciplinario y multisectorial que permita un conocimiento y una gestión integrales de los procesos ecológicos, bioquímicos, físicos, económicos, políticos, culturales y sociales que se derivan en la construcción del riesgo socioambiental. Además, es fundamental el diálogo entre los diferentes niveles de gobierno y las convenciones internacionales acerca del uso de la energía, la tecnología, la regulación del transporte y el desarrollo urbano, entre otros temas.

El recorrido por las experiencias de las ciudades latinoamericanas da cuenta de la relevancia de los esquemas participativos y de consulta entre sectores, que brindan espacios para fraguar respuestas hacia el “saber hacer”. El éxito depende de la voluntad política y la capacitación de gestores, el diálogo, el flujo de información y la continuidad y calidad en la toma y análisis de datos científicos y técnicos.

Esperamos que este texto ayude a los países de América Latina a apreciar la complejidad de la relación entre el cambio climático y la calidad de vida en las ciudades y que, además, estime la creatividad para enfrentar los desafíos de la adaptación, en consonancia con las acciones estratégicas de la mitigación y del desarrollo urbano socioambiental.

Alicia Bárcena
Secretaria Ejecutiva
Comisión Económica para América Latina y el Caribe (CEPAL)

Holm Tiessen
Director Ejecutivo
Instituto Interamericano para la Investigación del Cambio Global (IAI)
I. El cambio climático y las áreas urbanas de América Latina: a manera de introducción

Roberto Sánchez Rodríguez

Gran parte de la comunidad internacional reconoce que el cambio climático es uno de los retos más importantes para el desarrollo y la sostenibilidad del siglo XXI (PNUD, 2005 y 2010; OCDE, 2009; Banco Mundial, 2011; ONU-Hábitat, 2011b). Son dos los aspectos sobresalientes de este desafío: la dificultad para lograr consenso en las negociaciones internacionales encaminadas a reducir las emisiones globales de gases de efecto de invernadero (en adelante, GEI) y el creciente consenso internacional sobre la urgente necesidad de confeccionar agendas de adaptación al cambio climático a nivel nacional, regional y local. La comunidad científica internacional, a través del Panel Intergubernamental sobre el Cambio Climático (IPCC por su sigla en inglés; también Grupo Intergubernamental de Expertos sobre el Cambio Climático) subraya la importancia de los dos aspectos arriba señalados. Dos de sus recientes informes destacan la importancia de mejorar de manera significativa los esfuerzos encaminados a reducir las emisiones GEI a nivel mundial, nacional y local. No obstante, también hacen hincapié en la necesidad de que las sociedades aceleren la adaptación al cambio climático, en particular en los países de ingresos medianos y bajos, donde el impacto puede causar mayores daños1 (IPCC, 2007 y 2012).

Durante la última década, las áreas urbanas han pasado a ocupar un papel central en el debate internacional sobre el cambio climático. La nueva geografía de la urbanización contemporánea identifica las áreas urbanas como un elemento clave de los procesos de globalización y de transición hacia nuevos esquemas de ocupación del territorio a nivel mundial (Seto, Sánchez-Rodríguez y Fragkias, 2010). Más del 50% de la población total del planeta vive ya en áreas urbanas, y se estima que ese porcentaje será del 75% antes de 2050 (ONU-Hábitat, 2011b). Las áreas urbanas son también un elemento central de la economía global en cuanto centros vitales de producción y consumo, y a nivel nacional como componentes centrales de la economía nacional (Seto, Sánchez-Rodríguez y Fragkias, 2010). Este hecho ha llevado a diversas organizaciones internacionales a considerar que el combate contra el cambio climático se ganará o se perderá en las áreas urbanas (Naciones Unidas, Banco Mundial, OCDE). Por un lado, se estima...
que una parte significativa de las emisiones GEI está directa o indirectamente vinculada a actividades urbanas. A nivel mundial, varios estudios estiman que las áreas urbanas generan cerca del 67% de las emisiones GEI provenientes del consumo energético (AIE, 2008; Kennedy, Demoulin y Mohareb, 2012; Marcutullio y otros, 2012), pero su peso en las emisiones nacionales varía según los países y refleja su tamaño y su grado de centralidad en las economías nacionales y en la provisión de servicios y bienes. De ahí que algunos autores hayan sugerido que es necesario considerar las emisiones GEI urbanas en el contexto en que se producen (Satterthwaite, 2008; Marcutullio y otros, 2012). El rápido proceso de urbanización que tendrá lugar en las próximas décadas refuerza el papel central de las áreas urbanas en las emisiones GEI a escala mundial. Por ello, su actuación es indispensable en los trabajos tendientes a mitigar el cambio climático a nivel mundial (Betsill y Bulkeley, 2006; Dodman, 2009).

La atención internacional al cambio climático impulsó a un creciente número de áreas urbanas de todo el mundo a elaborar planes de acción para reducir sus emisiones GEI durante la última década. Por ejemplo, el Consejo Mundial de Alcaldes sobre el Cambio Climático (http://www.worldmayorscouncil.org/) agrupa a un número importante de ciudades comprometidas en la tarea común de proteger al clima, y el grupo C-40 (Grupo de las Grandes Ciudades sobre el Clima; http://www.c40cities.org/) reúne a las 40 ciudades más grandes del mundo en un empeño similar. La Fundación Clinton promueve acciones para la reducción de GEI en las ciudades (http://www.clintonfoundation.org/main/our-work/by-topic/climate-change.html) mediante el empleo de fuentes de energía más limpias y eficaces. Aunque el número de ciudades de América Latina que se han sumado a este tipo de esfuerzos es menor al registrado en países industrializados, presenta, no obstante, una tendencia ascendente. México, D.F., São Paulo, Río de Janeiro, Bogotá, Montevideo, Quito, Buenos Aires, entre otras, han diseñado programas y planes para reducir sus emisiones GEI.

Por otra parte, los impactos del cambio climático en las áreas urbanas de América Latina pueden agravar las presiones que conlleva el desarrollo. Un referente importante es el riesgo de que se produzcan desastres vinculados a fenómenos hidrometeorológicos y climáticos en un número significativo de áreas urbanas de la región. El riesgo de desastres asociados a eventos climáticos y meteorológicos continúa siendo un serio problema para el desarrollo a nivel local, regional y nacional en América Latina (EIRD, 2008 y 2010; CEPAL, 2012). El análisis de la Estrategia Internacional de las Naciones Unidas para la Reducción del Riesgo de Desastres (EIRD, 2008) muestra que en muchos países de América Latina aún persisten retrasos significativos, en particular a nivel local. Esta organización considera necesario profundizar en el conocimiento de las causas del riesgo de desastres en las dinámicas del desarrollo urbano, y subraya que la gestión y la prevención del riesgo de desastres en ciudades deben tratarse como un proceso social estrechamente vinculado al desarrollo local en todas sus dimensiones. Por ello es importante dar prioridad al apoyo y el fortalecimiento de las capacidades de los gobiernos locales, haciendo hincapié en las maneras de diseñar e implementar políticas de prevención y reducción de riesgo en sus procesos de desarrollo local, según sus contextos y prioridades.

Al igual que en el caso de la mitigación de las emisiones GEI, una serie de organizaciones internacionales apoyan la elaboración de medidas de adaptación al cambio climático en áreas urbanas (OCDE, 2009; PNUD, 2010; Banco Mundial, 2011; ONU-Hábitat, 2011b; EIRD, 2012), pero hasta ahora solo un reducido número de ciudades de América Latina ha empezado a desarrollar estrategias y medidas de adaptación al cambio climático. Por lo general se trata de ciudades capitales, como Santiago, México, D.F., Bogotá, Montevideo y Quito, entre otras. Sin embargo, las ciudades pequeñas y medianas son las que crecen con mayor rapidez en la región y las que tienen mayores oportunidades para reorientar su crecimiento, incorporando el cambio climático en el diseño de estrategias y planes de desarrollo. No obstante, el tema de la adaptación al cambio climático aún está ausente en la planificación del crecimiento de esas ciudades.

Las áreas urbanas de América Latina se enfrentan a la necesidad de tomar en cuenta el cambio climático en sus planes de crecimiento y desarrollo con miras a contar con mejores armas para reducir los impactos negativos y aprovechar los positivos.
A. La importancia del cambio climático para la planificación de las áreas urbanas de América Latina

A pesar de la creciente atención internacional que hoy se presta al cambio climático, y de las medidas que los países de América Latina han implementado a nivel nacional como parte de los compromisos de la Convención Marco de las Naciones Unidas sobre el Cambio Climático y atendiendo a sus propias necesidades, es muy poca la atención que se presta a este problema en la gran mayoría de las áreas urbanas de la región. Parte del problema es que no se ha tenido suficientemente en cuenta la cuestión de difundir y explicar por qué el cambio climático es importante para el desarrollo local. Sin embargo, se trata de una estrategia aplicada por varias ciudades de países industrializados (Londres, Rotterdam, Nueva York, Chicago, entre otras) que han implementado con buenos resultados planes de mitigación y adaptación.

Existen otros aspectos que han constituido un obstáculo a la hora de prestar atención al cambio climático en las áreas urbanas. Entre los más frecuentes cabe citar los siguientes:

El cambio climático suele considerarse un problema a largo plazo, cuyas consecuencias empezarán a manifestarse y a ser relevantes dentro de 30 o 50 años, razón por la cual no es necesario, ni recomendable, invertir en acciones a corto plazo encaminadas a hacer frente a este desafío. Hay tres aspectos de esta discusión que han de considerarse importantes. Por un lado, la falta de información a nivel local sobre las dimensiones del cambio climático y el modo en que se vincula a los problemas actuales de las áreas urbanas. La desinformación fomenta la idea de que no es necesario ni importante tomar medidas a corto plazo. Hay que reconocer que gran parte de la información disponible sobre el cambio climático no es fácilmente accesible a los actores locales, en particular en áreas urbanas pequeñas o medianas. Por otro lado, es importante tomar en cuenta las asimetrías entre los tiempos administrativos y político-electorales de los encargados de tomar decisiones a nivel local, los horizontes temporales de otros actores urbanos y las escalas temporales del cambio climático. Las diferencias entre esas escalas han representado un obstáculo a la hora de considerar el cambio climático como un problema de desarrollo a corto plazo y con consecuencias aún mayores a mediano y largo plazo. Un tercer aspecto es la dificultad de identificar cuándo, dónde y con qué intensidad se registrarán los impactos del cambio climático, así como la dificultad que implica definir con exactitud si las consecuencias negativas o positivas de un fenómeno climático están asociadas o no al cambio climático.

Asimismo, es importante reconocer que la gran mayoría de las áreas urbanas de América Latina hacen frente a serios problemas de desarrollo con escasos recursos humanos, técnicos y económicos para controlarlos y, eventualmente, solucionarlos. La presión de los problemas inmediatos merma la atención que se presta a factores como el cambio climático, que no se consideran relevantes a corto plazo y sobre los que la información a nivel local es escasa. En relación con este aspecto debe considerarse la importancia de los asentamientos informales que han crecido fuera de los programas oficiales de planificación en un alto número de ciudades de América Latina, un fenómeno que dificulta la capacidad local para orientar de manera ordenada el crecimiento de esos asentamientos.

En muchas áreas urbanas persiste la idea de que la reducción de las emisiones GEI a nivel local es demasiado cara, que está fuera de las posibilidades de los gobiernos urbanos y que produce pocos beneficios a corto plazo. En realidad, ciudades de diversos tamaños, presupuestos y estructuras institucionales disponen de un abanico de medidas de mitigación que respondan a sus especificidades locales y sus capacidades de gestión.

Cabe subrayar que, en un número significativo de ciudades de la región, la planificación urbana se lleva a cabo con horizontes a corto plazo dentro de la temporalidad de sus administraciones políticas (generalmente, entre tres y cuatro años). La planificación a corto plazo es uno de los obstáculos en la construcción de opciones de desarrollo sostenible, incluidas la respuesta a las necesidades urbanas a mediano y largo plazo y los riesgos asociados a la variabilidad y el cambio climáticos.
Estos aspectos ayudan a explicar por qué hasta ahora son muy pocas las áreas urbanas que han prestado atención al cambio climático. Sin embargo, vale la pena tener en cuenta varios factores que obligarían a las áreas urbanas a incluir el cambio climático en sus planes, estrategias y modelos de desarrollo a corto plazo.

En primer lugar, habría que reconocer que el cambio climático es uno de los grandes retos para el desarrollo y la sostenibilidad en el siglo XXI. A lo largo de la historia, el desarrollo de sociedades y ciudades ha estado siempre vinculado al clima, que ha sido un factor determinante en el surgimiento y la desaparición de civilizaciones y continúa siendo un elemento central en las opciones de desarrollo y sostenibilidad de la humanidad (Fagan, 2008). La relación unidireccional entre el clima y la sociedad comenzó a transformarse rápidamente a partir de la revolución industrial. Las observaciones recientes indican que las emisiones GEI están desplazando muchos indicadores climáticos más allá de los patrones de variabilidad natural dentro de los que se han desarrollado la economía y la sociedad contemporáneas (Seneviratne y otros, 2012). Esos indicadores incluyen la temperatura media de la superficie del planeta, la elevación del nivel del mar, la temperatura oceánica global, la extensión del hielo marino del Ártico, la acidificación oceánica y los acontecimientos climáticos extremos (Steffen, Crutzen y McNeill, 2007; Rockström y otros, 2009). Si no se frenan las emisiones GEI, es probable que muchas tendencias climáticas se aceleren, lo que aumentará el riesgo de que se produzcan variaciones bruscas o irreversibles del clima, con consecuencias importantes para la sociedad (Richardson y otros, 2009).

El segundo aspecto consiste en recordar que la vida útil media de las infraestructuras y las construcciones urbanas es de 70 años. Es muy probable que durante las próximas décadas los espacios urbanos que se construyan hoy operen en condiciones climáticas diferentes. Analizar las maneras en que el clima afectará a la operación de las ciudades o el modo en que las ciudades afectarán al clima durante las próximas décadas contribuye a prolongar la vida útil de las infraestructuras y estructuras urbanas, a mejorar su eficacia y a reducir la necesidad de nuevas obras en el futuro.

Un beneficio adicional de la inclusión del cambio climático en los planes que orientan el crecimiento de las áreas urbanas es que así se fortalecen los programas de planificación con perspectivas multidimensionales y transdisciplinarias, necesarias para tener en cuenta las dimensiones física, social, económica, política, cultural y ecológica del propio desarrollo urbano y del cambio climático.

En tercer lugar, la prevención y la planificación son más eficaces y de menor costo que una mera reacción a los impactos del cambio climático (FCM, 2009; PNUD, 2010; ONU-Hábitat, 2011a, Dodman, 2012; Banco Mundial, 2012). Tres publicaciones recientes de importantes organizaciones internacionales abordan este tema (CEPAL, 2010; IPCC, 2012; Banco Mundial, 2012) y en sus conclusiones se subraya el incremento del costo económico y financiero si se retrasa la elaboración de medidas para hacer frente al reto del cambio climático. Cuanto más se retrasen estas acciones, mayor será su costo. Desgraciadamente, no solo se trata de un costo financiero. Las consecuencias del retraso incluyen costos sociales, económicos y ambientales aún mayores. Un problema adicional es que las alternativas para enfrentarse al cambio climático se reducen significativamente mientras más se retrasa la decisión de hacerlo a corto plazo.

En conjunto, y en relación con este último punto, es conveniente tener en cuenta las distintas acciones de bajo costo que pueden desarrollarse a corto plazo y que contribuyen a dar una mejor respuesta al cambio climático y a los problemas ya existentes en las áreas urbanas. Diversos autores e investigadores llaman a esas medidas “poco que lamentar.” Se trata de opciones de adaptación o de mitigación del cambio climático que, con una inversión moderada, incrementan la capacidad de sobreponerse a los riesgos futuros o de reducir las emisiones GEI. En condiciones ideales, son inversiones que también contribuyen a alcanzar metas del desarrollo local (mejorar el drenaje pluvial y sanitario; la distribución y calidad del agua; el transporte urbano; el uso del suelo; la eficiencia térmica de las construcciones, entre otras cosas).
Es decir, son medidas que a la vez que atienden necesidades urgentes del desarrollo local, contribuyen a preparar y mejorar la capacidad adaptativa para hacer frente al cambio climático. En ocasiones, se trata de inversiones ya programadas o parte de estrategias ya existentes, que solo requieren pequeñas consideraciones para contribuir también a combatir el cambio climático (Hallegatte, 2009; ONU-Hábitat, 2010). Algunas de esas acciones tienen beneficios combinados tanto para la adaptación como la mitigación del cambio climático; por ejemplo, el uso de servicios ecosistémicos como los techos verdes. Algunas ciudades ya recurren a este enfoque para resolver problemas urbanos actuales y al mismo tiempo crear acciones contra el cambio climático (mayor eficiencia térmica de las construcciones y reducción del consumo de energía combinada con la reducción de la carga del drenaje pluvial). Existe una amplia gama de servicios ecosistémicos de bajo costo que ayudan a hacer frente al desafío del cambio climático y a solucionar los problemas urbanos.

Por último, cabe citar la existencia de una creciente oferta de apoyos internacionales al desarrollo de medidas encaminadas a incorporar el reto del cambio climático en las áreas urbanas, tanto para acciones de mitigación como de adaptación. Esos apoyos incluyen asesorías técnicas, vínculos con comunidades científicas para fortalecer el acceso al conocimiento útil previo a la toma de decisiones y recursos financieros para formular planes de acción².

B. Elementos para el desarrollo de enfoques operativos

Las interacciones bidireccionales entre clima y sociedad son particularmente relevantes en el caso de las áreas urbanas. El rápido crecimiento de las ciudades como centros de consumo y producción a partir de la revolución industrial ha sido un elemento central en la forma como la sociedad interactúa con el clima. En el diagrama 1.1 se ilustra el flujo bidireccional de esas interacciones, que permite distinguir el impacto del clima en las áreas urbanas en un sentido y, en el otro, el impacto de las ciudades en el clima.

En el diagrama también puede verse que esa relación bidireccional es dinámica. Una vez que se producen los impactos, en el otro sistema se registra una reacción que modifica los procesos originales y el impacto en el opuesto. Un ejemplo sencillo que ayuda a ilustrar esa dinámica es el incremento de las olas de calor como consecuencia de la variabilidad y el cambio climáticos. Se trata de uno de los impactos sugeridos por los escenarios del cambio climático durante las próximas décadas en varias áreas urbanas de América Latina. Ese impacto tiene consecuencias significativas en la salud de los habitantes (morbilidad y mortalidad), en la productividad de las actividades económicas, en las funciones urbanas básicas (transportes, interacción social) y en la demanda de agua y energía. Una de las medidas de adaptación a ese impacto, planeada o espontánea, es el aumento del uso de aire acondicionado, que, a su vez, produce un incremento del consumo de electricidad, lo que conlleva un aumento de las emisiones GEI. Este sencillo ejemplo ilustra la importancia de coordinar las acciones de mitigación y adaptación al cambio climático para evitar conflictos entre ellas y crear sinergias en beneficio del desarrollo local.

² A lo largo de esta publicación se mencionan algunos ejemplos de ciudades que han adoptado medidas para combatir el cambio climático con este tipo de apoyos.

En el diagrama I.1 se ilustra la necesidad de desarrollar enfoques operativos en las respuestas al cambio climático, a partir de enfoques integrados con perspectivas interdisciplinarias y transdisciplinarias que tomen en cuenta las condiciones, las necesidades y las características de cada ciudad, sus problemas y la forma en que estos factores interactúan con la variabilidad y el cambio climático. Los siguientes aspectos tienen en cuenta elementos útiles para avanzar en esa dirección.

1. **Responder al cambio climático en el marco del desarrollo local**

Es pertinente volver a insistir en el vínculo entre las acciones para combatir el cambio climático y los problemas actuales del desarrollo urbano. Integrar acciones para combatir el cambio climático en los planes de desarrollo urbano y los esfuerzos tendientes a conseguir un crecimiento sostenible son dos procesos que tienen implicaciones sociales, económicas y ambientales para las áreas urbanas a corto, mediano y largo plazo. Desde el punto de vista de la mitigación, las medidas que aspiran a conseguir una mayor eficacia de una amplia gama de funciones urbanas contribuyen a un ahorro significativo en el uso de energía y a la reducción de las emisiones GEI, a la vez que ayudan a resolver problemas urbanos actuales (transportes, coherencia en el uso del suelo, control de los residuos sólidos, entre otros). Un beneficio adicional al que no se ha prestado suficiente atención hasta ahora es el impacto de una economía baja en carbono fomentada internacionalmente como parte de las respuestas al cambio climático para las próximas décadas a escala mundial (FEM, 2008; PNUMA, 2011). Las nuevas pautas de producción y consumo de la economía mundial, creadas a partir del surgimiento de actividades bajas en emisiones de carbono, tendrán un impacto en las economías locales y nacionales. Fomentar pautas de consumo de energía más eficaces en las áreas urbanas puede contribuir a integrar las economías de América Latina en la transición hacia lo que ha dado en llamarse “economía verde” (Rode y Burdett, 2011).
En el caso de la adaptación al cambio climático, es importante considerar la adaptación como un proceso y no un estado final (Hinkel y otros, 2009; Hulme y otros, 2009; Hofmann, Hinkel y Wrobel, 2011). La información disponible a nivel internacional sobre la adaptación al cambio climático presenta una diversidad de enfoques y experiencias que pueden llevar a considerar la adaptación como un estado final, asociado con frecuencia a la construcción de infraestructuras para proteger a las ciudades de los impactos negativos del cambio climático. Considerar la adaptación como un proceso flexible (PNUD, 2005 y 2010; ONU-Hábitat, 2011a) permite realizar ajustes periódicos según se van presentando los impactos del cambio climático y las condiciones urbanas (físicas, sociodemográficas, económicas, ambientales) varían en el tiempo. Este enfoque permite también ajustar la integración de los procesos que condicionan las alternativas y necesidades de adaptación, así como de los problemas y posibilidades de desarrollo de cada ciudad (Adger y otros, 2009; Tompkins y otros, 2010). De ahí que sea importante fomentar la coherencia y la coordinación entre la adaptación al cambio climático y los planes de desarrollo local (lucha contra la pobreza, desarrollo social, crecimiento económico, creación de viviendas, programas de infraestructuras, protección ambiental).

A la hora de vincular al desarrollo urbano las medidas para combatir el cambio climático, es útil tomar en cuenta los programas y proyectos actuales, diseñados a nivel local, regional y nacional, que pueden incidir en la consecución de los objetivos planteados por las respuestas al cambio climático (Ligeti y otros, 2007; PNUD, 2010; ONU-Hábitat, 2011a; EIRD, 2012).

2. El papel de la planificación

A pesar de la tradición de estudios urbanos en América Latina, llama la atención lo poco que se ha trabajado para diseñar perspectivas multidimensionales e interdisciplinarias útiles al desarrollo urbano y a la planificación de estrategias y acciones para combatir el cambio climático. Parte del problema es que el acento, en los planes de desarrollo urbano, se pone en la dimensión física. Las críticas de Blair (1973) a la planificación física y su propuesta de adoptar enfoques interdisciplinarios para la planificación urbana siguen vigentes a pesar de tener ya 40 años. La búsqueda de nuevos enfoques para responder a temas complejos como el cambio climático refuerza el llamamiento de otros autores que piden actualizar la planificación urbana de acuerdo con las nuevas necesidades de la sociedad (Hogan, 2003). En este sentido, se han producido avances interesantes en el estudio del paisaje como una unidad de análisis capaz de aglutinar esquemas multidimensionales integrados (Erwing y otros, 2008; Grimm y otros, 2008; Blanco y Alberti, 2009). Estos estudios parten de la premisa de que el trabajo interdisciplinario es indispensable para entender la compleja relación que, en el espacio urbano, se establece entre procesos ecológicos, bioquímicos, físicos, económicos, políticos, culturales y sociales. Este esquema incluye la compleja interacción de las áreas urbanas con su entorno biofísico y la elaboración de planes operativos para la adaptación y la mitigación del cambio climático. El enfoque multidimensional e interdisciplinario es necesario a la hora de buscar un equilibrio entre las acciones de mitigación y adaptación al cambio climático en las ciudades (Biesbroek, Swart y van der Knaap, 2009; Hamin y Gurran, 2009; Hulme y otros, 2009; Calvo, 2010; Rosenzweig y otros, 2011). Es importante recordar el posible efecto acumulativo de los impactos del cambio climático que con frecuencia hacen necesario, para hacerles frente, considerar la implementación de medidas transversales en varios sectores del gobierno local.

La bibliografía internacional otorga a la planificación un papel central para enfrentar el reto del cambio climático en las áreas urbanas; sin embargo, apenas se cuestiona la capacidad real de la planificación para desempeñar ese papel. Por ejemplo, en qué medida la planificación es capaz de establecer una coordinación transversal entre las oficinas del sector público a nivel local y con otros niveles de gobierno. La dificultad para lograr esta clase de coordinación se considera un problema recurrente en el análisis de las medidas encaminadas a combatir el cambio climático a nivel urbano, tanto en países industrializados como en países en desarrollo (Wilson, 2006; Storbjork, 2007; Roberts, 2010; Doran, 2011).
3. La puesta en práctica de las acciones

La implementación de las medidas destinadas a combatir el cambio climático debe considerarse un proceso adicional a la planificación en diversas etapas, de acuerdo con las condiciones y recursos disponibles a nivel local. Un enfoque útil consiste en fijar objetivos realistas que permitan mostrar avances y extraer lecciones del proceso de implementación (Glaas y otros, 2010; Hinkel y otros, 2009; Hofmann, Hinkel y Wrobel, 2011). Es importante tener en cuenta que los actores que participan en el proceso de planificación no necesariamente lo hacen en el proceso de implementación. Esta etapa tiene una dinámica propia y requiere recursos adicionales.

4. Fortalecer las capacidades locales

Se trata de un aspecto esencial para fortalecer la capacidad de acción de una amplia gama de actores urbanos (Corée-Morlot y otros, 2009; Norman, 2009; Blanco y Alberti, 2009; ONU-Hábitat, 2011b). La capacitación facilita el desarrollo de un proceso de aprendizaje dentro del proceso de planificación de las respuestas de mitigación y adaptación al cambio climático, y constituye un apoyo al desarrollo local (Hinkel y otros, 2009; Glaas y otros, 2010; Gupta y otros, 2010 Hofmann, Hinkel y Wrobel, 2011). Holden (2008) considera que el aprendizaje es un aspecto relevante, si bien poco tenido en cuenta, de la planificación, y una parte fundamental de la adaptación a las innovaciones. Fortalecer las capacidades de los actores urbanos permite dar respuestas al cambio climático aun dentro del marco de incertidumbre de sus impactos y mejorar la capacidad de respuesta a acontecimientos climáticos inesperados cuando estos se producen; asimismo, contribuye a tomar en cuenta el efecto acumulativo de los impactos del cambio climático y favorece el diseño de estrategias y políticas de adaptación y mitigación del cambio climático dentro del marco del desarrollo local.

5. Planes inclusivos

Otro aspecto importante del diseño de medidas para luchar contra el cambio climático es el uso de planes inclusivos, que reconocen la capacidad de agencia de los grupos sociales en el área urbana. Es importante resaltar que los planes participativos no deben limitarse a la consulta pública. Este tema aparece cada vez con mayor frecuencia en la bibliografía internacional y, en particular, en los planes operativos que han sugerido algunas organizaciones internacionales (Naciones Unidas, Banco Mundial, OCDE, USAID, entre otras). Esos planes reconocen el importante papel y la responsabilidad de los gobiernos locales a la hora de orientar el crecimiento urbano y la coordinación de las respuestas al cambio climático, pero también reconocen la necesidad de incluir a otros actores urbanos (el sector público, la comunidad científica, organizaciones no gubernamentales, asociaciones de profesionales, grupos comunitarios). En América Latina, los proyectos participativos son particularmente relevantes dada la importancia del crecimiento urbano informal en las ciudades de la región3 (con frecuencia localizado en zonas de peligro en caso de fenómenos hidrometeorológicos y climáticos). Sería un error considerar que los grupos de bajos ingresos, por lo general los más sensibles al cambio climático, son actores pasivos y sin capacidad de acción para responder al cambio climático (Moser y Satterthwaite, 2008; Banco Mundial, 2011). Encontrar alternativas para captar la capacidad de agencia de los individuos y los grupos sociales en las estrategias de adaptación al cambio climático es un paso importante para elaborar respuestas incluyentes en la atención a los problemas urbanos actuales y responder a los retos del cambio climático. Los nuevos planes de desarrollo urbano deben combinar los enfoques convencionales de arriba abajo con enfoques participativos de abajo arriba (Moser y Satterthwaite, 2008; Sánchez-Rodríguez, 2012).

3 Una de las características del proceso de urbanización de América Latina es la importancia de la pobreza y la marginación social en la región y su impacto en el crecimiento urbano informal (Arriagada, 2000; Jordán y Martínez, 2009; Ros, 2009).
Vale la pena recordar que, en América Latina, la participación social en la gestión urbana está limitada por las asimetrías en el acceso a los recursos y en el poder de decisión de los actores involucrados. La capacidad de generar información, la calidad de la información científica y el acceso a esta suelen estar restringidos a un selecto grupo de actores gubernamentales y no gubernamentales (académicos, sector privado). Los que están fuera de ese círculo selecto, incluidas las organizaciones locales y los gobiernos municipales, acaban contando con pocas posibilidades de generar y almacenar información para entender y resolver sus problemas de mitigación y adaptación al cambio climático (Borquez y otros, 2009; Romero-Lankao, Qin y Borbor-Cordova, 2013). Esta discusión pone de relieve la necesidad de diseñar nuevos esquemas de gobernanza en el desarrollo de proyectos de planificación útiles para enfrentarse de manera eficaz al desafío del cambio climático. Es importante reconocer que el papel central del sector público en la planificación del desarrollo, incluidas las medidas para combatir el cambio climático, no debe restar importancia a la participación de otros actores urbanos en esos esquemas de gobernanza.

6. El papel de la información

Los procesos mediante los que se genera y se distribuye la información científica constituyen otro elemento relevante de la capacidad institucional para hacer frente al cambio climático, sobre todo cuando la información pertinente se emplea para apoyar procesos de aprendizaje social (Engle y Lemos, 2010). Dado que las características particulares del cambio climático se diferencian en muchos aspectos de las características de otros asuntos de política, los nuevos tipos de información y los mecanismos para la transmisión de información pasan a ser requisitos previos indispensables para la toma de decisiones. Sin embargo, más que ser un mero ejercicio técnico o tecnocrático, la información sobre los riesgos y opciones para responder al cambio climático tiene una dimensión política, ya que en ella inciden también, entre otros factores, el poder de algunos actores a la hora de definir y diagnosticar el cambio climático, las políticas de gestión más pertinentes y las estrategias para gestionar asuntos relacionados con la equidad social (Betsill y Bulkeley, 2006).

7. El marco normativo

El marco normativo es otro elemento importante del diseño de acciones contra el reto del cambio climático en las áreas urbanas de América Latina. El marco jurídico nacional da un apoyo fragmentado al desarrollo de políticas de cambio climático a nivel local (estrategias de mitigación y adaptación) y por esta razón varios países de la región han decidido formular leyes federales específicas para combatir el cambio climático. Por desgracia, son pocas las áreas urbanas que cuentan con un marco normativo propio para el cambio climático (Río de Janeiro, São Paulo, Belo Horizonte, Curitiba, México, D.F., entre otras). Es probable que este aspecto reciba más atención en un futuro próximo. La transición que implica prestar atención al cambio climático pone de manifiesto las limitaciones de los marcos regulatorios actuales de varias ciudades. Aunque las legislaciones actuales asignan a las autoridades estatales y locales la responsabilidad en lo que concierne a diversos servicios e infraestructuras, la influencia de dichas autoridades es más limitada en lo que respecta a sectores clave en el ámbito de las pautas de uso de energía, las emisiones y la identificación de riesgos y puntos vulnerables. Es decir, la capacidad de las autoridades urbanas para gestionar ámbitos como la energía, los transportes y los cambios en el uso de suelo es limitada (Romero-Lankao, Qin y Borbor-Cordova, 2013).

8. Estrategias para garantizar recursos

Es importante gestionar con las autoridades subnacionales y nacionales el flujo hacia las ciudades de recursos financieros y técnicos que permitan planificar las respuestas urbanas al cambio climático.
De igual forma, es relevante negociar mecanismos para lograr que las relaciones multinivel entre los diversos órdenes de gobierno en apoyo a esas respuestas sean más eficaces. En muchos casos puede ser de utilidad poner de manifiesto, en esas negociaciones, la necesidad de contar con un enfoque integrado de esas respuestas. Así se contribuiría a reducir y evitar la dispersión de recursos para atender agendas complementarias. Es también importante subrayar el vínculo entre las respuestas al cambio climático y el desarrollo local.

9. Seguimiento y evaluación

El último aspecto que cabe considerar en la discusión sobre los elementos para diseñar enfoques operativos es el seguimiento y la evaluación de las respuestas al cambio climático. A pesar de que el seguimiento y la evaluación forman parte de los proyectos de planificación urbana, son pocas las ciudades que los implementan. El seguimiento y la evaluación son herramientas que ayudan a identificar problemas, obstáculos y oportunidades para mejorar las medidas implementadas a través de la planificación orientada hacia el crecimiento de la ciudad. El seguimiento y la evaluación de la planificación de las respuestas al cambio climático (mitigación y adaptación) son particularmente importantes dados la incertidumbre sobre sus impactos, los continuos cambios en la sociedad y el espacio urbano y los avances para entender mejor el cambio climático. Debido a la importancia del contexto local de cada ciudad, la bibliografía internacional sugiere la participación activa de los beneficiarios de la mitigación y la adaptación en el diseño de los parámetros para la evaluación (CARE, 2009; Obermaier y otros, 2009; Bizikova, Boardley y Mead, 2010; EIRD, 2012; Picketts y otros, 2012; Turnbull, Sterrett y Hilleboe, 2013). En el diseño del seguimiento conviene proceder con cuidado a la hora de identificar los indicadores de los resultados que cabe esperar de las respuestas al cambio climático. Por su parte, la evaluación requiere que se diseñen métodos para analizar el conjunto de esos indicadores, sus puntos fuertes y sus debilidades, y la retroalimentación que puede obtenerse de su uso.

10. Estrategia de comunicación y difusión

Un último aspecto que se ha de tener en cuenta a la hora de diseñar enfoques operativos es la puesta en práctica de una estrategia de comunicación y difusión que subraye el alcance de dichos enfoques, su estructura, implementación y resultados que cabe esperar de las medidas que permitirán hacer frente al cambio climático. Las ciudades pueden basar su estrategia de comunicación en medios tradicionales (prensa, radio, videos, boletines, entre otros) o pueden tener en cuenta también el empleo de medios de información populares (por ejemplo, reuniones con asociaciones de colonos).

C. Estructura de esta publicación

El Instituto Interamericano para la Investigación del Cambio Global (IAI) y la Comisión Económica para América Latina y el Caribe (CEPAL) han unido esfuerzos para contribuir al desarrollo de respuestas al cambio climático en las ciudades de América Latina. Convencidas estas instituciones de la importancia de este tema para el desarrollo de la región en el siglo XXI, la colaboración entre ambas incluyó la organización de un taller regional para 35 planificadores urbanos de 18 países, que tuvo lugar en noviembre de 2010 en la sede de la CEPAL en Santiago. La idea de esta publicación surgió de las reflexiones finales de dicho taller, en las que se reconoce la necesidad de dar mayor difusión a este tema en la región. El presente documento pretende analizar y sistematizar la información internacional disponible sobre la mitigación y la adaptación al cambio climático en áreas urbanas. Su objetivo es ser una herramienta de apoyo a la formulación de respuestas al cambio climático. La poca atención que se ha prestado a este
tema en la región se refleja en el muy limitado número de ciudades de América Latina que actualmente cuentan con estrategias y planes climáticos.

La presente publicación es el resultado del trabajo colectivo de un grupo de académicos, científicos, planificadores urbanos y encargados de tomar decisiones a nivel local de diversos países de la región. La colaboración entre diversas áreas de especialidad y el intercambio de experiencias permitió elaborar un enfoque multidimensional para abordar un tema complejo como el cambio climático en las áreas urbanas. Esta publicación no se ha concebido para ser una guía metodológica, pero sí una herramienta analítica que facilite el diseño y la puesta en práctica de estrategias y acciones para responder al reto del cambio climático. Su estructura ofrece diversos puntos de entrada a los interesados en consultar la información. El lector puede escoger esos puntos de entrada de acuerdo con sus intereses particulares y las condiciones específicas de su ciudad y el tipo de iniciativa que se desea desarrollar.

Además de esta introducción, la presente publicación incluye cinco capítulos. El capítulo II presenta aspectos relevantes de la variabilidad y el cambio climáticos, que ayudan al lector a entender la importancia de incorporar esos aspectos en la planificación urbana y el diseño de acciones para hacer frente al cambio climático. La información que se incluye aspira a ayudar al lector a encontrar fuentes de información sobre la variabilidad y el cambio climáticos, así como dar ejemplos de su gestión en el contexto urbano. Se ofrece, además, un panorama general de la información climática y climática relevante para la toma de decisiones a nivel urbano, así como información sobre el clima urbano y algunos elementos del cambio climático. En la última parte se analizan algunas fuentes de información sobre datos hidrometeorológicos y climáticos de utilidad para los planificadores urbanos.

En el capítulo III se analizan los retos y los beneficios que conlleva la mitigación del cambio climático en las áreas urbanas. El nivel de emisiones GEI urbanas hace que las ciudades sean actores indispensables en las tareas de mitigación; por otra parte, sus recursos económicos y humanos potencian las capacidades necesarias para implementar las medidas necesarias. Durante la última década, las iniciativas de mitigación han proliferado en las ciudades, y por ese motivo hoy influyen más en la implementación de los planes y proyectos de respuesta al cambio climático nacional e internacional. Los autores del capítulo ilustran la manera en que las acciones de mitigación ayudan a identificar oportunidades para lanzar iniciativas en sectores donde tradicionalmente se ha promovido la reducción de emisiones GEI, como los transportes y la demanda energética del sector inmobiliario. Asimismo, señalan nuevas oportunidades en ámbitos poco estudiados, como son la infraestructura urbana, la planificación y el diseño de las ciudades. También se hace hincapié en el reto que, para las ciudades de América Latina, representa la tarea de desarrollar iniciativas de mitigación que contribuyan a reducir las emisiones y, a la vez, a cerrar las brechas en materia de infraestructuras y bienestar urbanos. Los autores subrayan que la agenda climática no se contrapone con la del desarrollo económico, y que el contexto actual ofrece una vía para que las ciudades redefinan su papel en las economías nacionales buscando nuevos modelos de crecimiento que incluyan la calidad ambiental.

En el capítulo IV se aborda el tema de la vulnerabilidad y la adaptación al cambio climático, haciendo hincapié en la importancia de considerar la adaptación como un proceso de aprendizaje que permita corregir errores y optimizar lecciones positivas. La lectura del capítulo permite identificar una diversidad de enfoques para diseñar estrategias y acciones de adaptación al cambio climático. Las sugerencias, guías y lineamientos ofrecidos a lo largo del texto son herramientas flexibles orientadas a fortalecer la capacidad analítica de los actores participantes en el proceso de adaptación.

4 Otro aspecto que vale la pena destacar es la poca atención que se presta al seguimiento y la evaluación de las respuestas urbanas al cambio climático. No cabe duda de que es difícil extraer lecciones útiles de un proceso tan reciente, pero el seguimiento y la evaluación de esas acciones requieren incorporar en su diseño y puesta en práctica las medidas y recursos necesarios para llevarlas a cabo. Las estrategias y planes de acción formulados hasta ahora en América Latina no incluyen medidas de seguimiento y evaluación.
Asimismo, en el capítulo se documenta el avance que, en materia de adaptación al cambio climático, se ha producido durante los últimos seis años en las ciudades de América Latina. Además, se sugiere que la adaptación al cambio climático se integre con las medidas para prevenir y reducir el riesgo de desastres asociados a eventos hidrometeorológicos y climáticos y con medidas que impulsen el desarrollo local. En el capítulo también se analizan las lecciones aprendidas gracias a las estrategias y medidas encaminadas a reducir el riesgo de desastres y a fomentar la adaptación al cambio climático, y se sugieren los lineamientos que se han de tomar en cuenta en la planificación urbana. En la última parte del capítulo se presentan algunos ejemplos de los aspectos tratados previamente.

En el capítulo V se ofrece al lector una perspectiva integrada de las respuestas a la variabilidad y al cambio climático en áreas urbanas, a la vez que se analizan los determinantes y los atributos de la capacidad de respuesta institucional y el papel real y potencial de la planificación urbana en el diseño de políticas climáticas. A fin de ilustrar la gestión del cambio climático se seleccionaron ocho ciudades, a saber: Buenos Aires y Rosario (Argentina), São Paulo y Río de Janeiro (Brasil), Manizales (Colombia), Santiago, y Chetumal y México, D.F. (México). Sobre la base de la comparación de las experiencias de gestión de dichas ciudades, se analiza la capacidad de respuesta institucional y se sondea el papel real y potencial de la planificación urbana y del territorio en el diseño de políticas. Los resultados muestran que el diseño de las acciones de política se vincula al diagnóstico del problema de política (cambio climático) y que se basa en experiencias anteriores de gestión (contaminación del aire, gestión de desastres).

En el capítulo VI se presenta un caso de estudio sobre la calidad del aire en la agenda pública de la Ciudad Autónoma de Buenos Aires y sus implicaciones para la salud. Asimismo, se analizan la dimensión política del problema y su relación con el debate sobre el cambio climático a nivel local. Las reflexiones sobre el espacio de interacción entre encargados de tomar decisiones, técnicos gubernamentales y científicos ilustran la dificultad de obtener consensos.

El conjunto de los capítulos mencionados hace hincapié en la urgente necesidad de informar a los gobiernos locales y los habitantes urbanos acerca de las implicaciones del cambio climático. El enfoque de la presente publicación es contribuir a vincular las tareas actuales de planificación, construcción y gestión del espacio urbano al desarrollo de estrategias locales para hacer frente al cambio climático. La búsqueda de mejores alternativas de desarrollo para la región en el siglo XXI depende de la capacidad de construir ciudades más eficaces, inclusivas y resistentes al cambio climático.

Bibliografía

Adger, W.N. y otros (2009), “Are there social limits to adaptation to climate change?”, *Climate Change*, vol. 93, N° 3-4, Springer.

Borquez, R. y otros (2009), “Institutional responses to climate change in Chile”, proyecto “Coming down the mountain: understanding the vulnerability of Andean communities to hydroclimatologic variability and global environmental change”, octubre.

CEPAL (Comisión Económica para América Latina y el Caribe) (2012), *Efectos del cambio climático en la costa de América Latina y el Caribe. Vulnerabilidad y exposición* (LC/W.460), Santiago de Chile.

FCM (Federación de Canadian Municipalities) (2009), *Municipal Resources for Adapting to Climate Change*, Ottawa, Ontario.

Hogan, R. (2003), The Failure of Planning, Ohio, Ohio State University Press.
Hulme, M. y otros (eds.) (2009), ADAM Adaptation and Mitigation Strategies: Supporting European Climate Policy, Norwich, Tyndall Centre for Climate Change Research, Universidad de East Anglia.
Obermaier, M. y otros (2009), “Adaptation to climate change in Brazil: the pintadas pilot project and multiplication of best practices examples through dissemination and communication networks”, Rio
PNUD (Programa de las Naciones Unidas para el Desarrollo) (2010), Designing Climate Change Adaptation Initiatives. A UNDP Toolkit for Practitioners, Nueva York, Naciones Unidas.
Richardson, K. y otros (2009), Informe de síntesis de cambio climático. Riesgos, retos y decisiones globales, Copenhague, Universidad de Copenhague.

II. La importancia de la información climática para la planificación del crecimiento y el desarrollo urbano

Cecilia Conde, Daniel Pabón y Roberto Sánchez Rodríguez

En el presente capítulo se ofrece información útil para los encargados de tomar decisiones, planificadores y actores urbanos que trabajan en el desarrollo de respuestas urbanas al cambio climático. En la primera parte se presenta una visión general de la información hidrometeorológica y climática y sobre el clima urbano; en la segunda, algunos elementos del cambio climático, mientras que en la última parte se analizan algunas fuentes de información sobre datos hidrometeorológicos y climáticos. Los autores aspiran también a ilustrar el posible uso de esa información a nivel local.

A. Aspectos hidrometeorológicos y climáticos

Vale la pena comenzar con un breve repaso conceptual relativo a la atmósfera, el tiempo atmosférico y el clima. La atmósfera es la capa que rodea la Tierra y está compuesta de una mezcla de gases (aire), aerosoles y nubes (véase el cuadro II.1). En las áreas urbanas, y cerca de la superficie terrestre, la composición de la atmósfera difiere un tanto de la general, debido a que algunos de los gases o aerosoles se encuentran en una concentración mayor a causa de los procesos que ocurren dentro de la ciudad. Los seres vivos toleran un umbral determinado de concentración de los componentes mencionados, y si estos se mantienen dentro de los umbrales tolerables, suele hablarse de buena calidad del aire. Si uno de esos componentes está fuera de dicho umbral, o si ingresa un componente distinto de los del aire, se habla de contaminante, y en ese caso el aire es contaminado. Los contaminantes tienen un impacto en el clima (a través del efecto de invernadero)\(^5\) y en el balance de radiación, con sus características de reflexión (albedo) o absorción de la radiación, y también en los seres vivos (en la salud). Así, el cambio

\(^5\) Propiedad que tienen algunos gases componentes de la atmósfera (vapor de agua, dióxido de carbono, metano y otros) que retienen parte de la radiación de onda que la superficie terrestre emite hacia el espacio. Debido al efecto de invernadero, la temperatura media del aire cerca de la superficie es de aproximadamente 15°C; la ausencia de atmósfera y de dichos gases en ella haría que la temperatura media del aire en superficie fuese de entre -18 y -23°C.
en la concentración de los componentes atmosféricos incide en el clima local y mundial y en la calidad del aire local.

La dinámica de la atmósfera genera el conjunto de condiciones, situaciones y fenómenos meteorológicos (vientos, nubes, lluvias, tormentas) que se observan durante un instante o un lapso de tiempo muy corto (minutos, horas, día) en un lugar o región, y ese estado instantáneo de la atmósfera se conoce como tiempo.

CUADRO II.1
COMPOSICIÓN DE LA ATMÓSFERA, INClUIDOS LOS COMPONENTES OBSERVADOS CERCA DE LA SUPERFICIE EN ÁREAS URBANAS

<table>
<thead>
<tr>
<th>Componente</th>
<th>Concentración (Porcentajes)</th>
<th>Efectos (En la atmósfera y como componente del sistema climático; en la calidad del aire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>780840 ppmv (78)</td>
<td>Importante para los seres vivos como parte del ciclo biogeoquímico del nitrógeno. En el sistema climático no desempeña un papel notable; los óxidos nitrosos (véase más abajo) son GEI y afectan a la calidad del aire (son contaminantes).</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>209460 ppmv (21)</td>
<td>No desempeña un papel notable en el sistema climático. Participa en la generación de ozono estratosférico (capa de ozono) y troposférico (cerca de la superficie). Véanse los detalles más abajo.</td>
</tr>
<tr>
<td>Argón</td>
<td>934 ppmv (0,9)</td>
<td>Gas noble, inerte, no desempeña un papel en el balance de radiación que mantiene el clima. Hasta ahora no se conocen efectos contaminantes.</td>
</tr>
<tr>
<td>Vapor de agua</td>
<td>Variable (1-4% en superficie)</td>
<td>Importante en el sistema climático por tratarse de un GEI. No se considera contaminante.</td>
</tr>
<tr>
<td>Monóxido de carbono</td>
<td>0,1 ppmv (0,00001)</td>
<td>Gas venenoso. Presente en el aire de las ciudades debido a que lo genera la combustión incompleta de gas, carbón, madera. Contaminante.</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>395-400 ppmv en 2012 (0,039-0,04)</td>
<td>GEI importante en el sistema climático, que se genera por procesos naturales y por la actividad humana (en las ciudades y centros industriales, por quema de combustibles fósiles).</td>
</tr>
<tr>
<td>Metano</td>
<td>1,79 ppmv (0,00017)</td>
<td>GEI</td>
</tr>
<tr>
<td>Ozono troposférico</td>
<td>0,07 ppmv (0,00007)</td>
<td>GEI. En áreas urbanas se incrementa por un proceso fotoquímico a partir de compuestos contaminantes; las altas concentraciones cerca de la superficie (ozono superficial) crean problemas para la salud humana, principalmente en el sistema respiratorio.</td>
</tr>
<tr>
<td>Ozono estratosférico</td>
<td></td>
<td>Bajas concentraciones de ozono estratosférico permiten el paso a la superficie de altos niveles de radiación ultravioleta, lo que afecta a la salud de los seres vivos.</td>
</tr>
<tr>
<td>Aerosoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón negro</td>
<td></td>
<td>Absorbe radiación solar y la radiación de onda larga de la superficie terrestre (ROLS).</td>
</tr>
<tr>
<td>Material particulado (MP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gotas</td>
<td></td>
<td>Participan en el balance de radiación al absorber, reflejar y emitir radiación. Si reaccionan con otros componentes, como los SOx, pueden generar lluvia ácida.</td>
</tr>
<tr>
<td>Cristales</td>
<td></td>
<td>Participan en el balance de radiación al reflejar la radiación solar o absorber parte de ella, así como por la emisión de radiación de onda larga.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Nota: ppmv – partes por millón de volumen; ppbv – partes por billón de volumen; GEI – gas de efecto invernadero.
La atmósfera, la dinámica atmosférica (tiempo atmosférico) y el clima son factores del ambiente urbano que inciden en diverso grado y de diversa forma en el funcionamiento de una ciudad. Así, aspectos como el confort y la salud humana, la disponibilidad de agua, de alimentos y energía, la movilidad intraurbana e interurbana, el desarrollo de diversas actividades y las amenazas y riesgos a los que están expuestos las comunidades y los sectores socioeconómicos de un sistema urbano, están influidos por la calidad del aire, la dinámica atmosférica y el clima. En la planificación urbana, en la reducción de riesgos asociados a fenómenos meteorológicos, hidrológicos y climáticos y en otros aspectos del desarrollo urbano, es necesario conocer y tener en cuenta los procesos atmosféricos y climáticos que se localizan en la ciudad; de ahí que la información sobre la calidad del aire y el clima sea muy valiosa para la planificación urbana.

Los fenómenos meteorológicos afectan de diversa forma a las áreas urbanas y a la vida de sus habitantes. Por ejemplo, las lluvias intensas y las granizadas pueden producir crecientes e inundaciones súbitas y afectar al transporte y la movilidad intraurbana (véase la imagen II.1); esas mismas lluvias intensas también pueden provocar deslizamientos en terrenos de altura pendiente y desastres lamentables; las condiciones de estabilidad atmosférica pueden dificultar la dispersión de contaminantes y dar lugar a situaciones críticas de calidad del aire y para la salud humana; de ahí que el conocimiento de los fenómenos meteorológicos frecuentes en una ciudad sea valioso para la planificación urbana.

IMAGEN II.1

LOS EFECTOS DE UNA GRANIZADA SOBRE LA CIUDAD DE BOGOTÁ EL 5 DE NOVIEMBRE DE 2007 (DAVID OSORIO/EL TIEMPO) EJEMPLIFICAN EL IMPACTO DE LOS FENÓMENOS METEOROLÓGICOS EXTREMOS EN LA CIUDAD

Ahora bien, cuando se hace referencia a las condiciones que predominan durante un período (una semana, un mes, un año, varios años, decenios, cientos de años) se habla de clima. Si el tiempo atmosférico es instantáneo, el clima es comparativamente duradero. Por ejemplo, cuando se habla de una mañana o de una tarde lluviosa, o calurosa o fría, se hace referencia al tiempo atmosférico; al decir el “mes pasado fue lluvioso” o “el año pasado fue caluroso”, se habla de clima. Del mismo modo, cuando se describen las condiciones que predominan en un lugar o región se habla de clima.

El clima regula los fenómenos meteorológicos (tormentas, heladas, olas de calor, episodios de inversión térmica) que se observan a diario en un lugar o región durante una determinada época del año, y hace que durante unos meses sean más frecuentes las lluvias u otros fenómenos. Las condiciones predominantes, o clima, dependen de lo lejos o cerca que un lugar o una región dados estén del Ecuador (latitud); de los metros a que se encuentre por encima del nivel del mar (altitud); de cómo se ubique en relación con las montañas (orografía); de si ese lugar o región está en la costa o dentro del continente (continentalidad); del efecto de las corrientes marinas, y de la circulación predominante de los vientos.
Para dar seguimiento a los procesos atmosféricos y a la calidad del aire, las variables (temperatura del aire, humedad del aire, presión atmosférica, vientos, fenómenos meteorológicos, concentración de gases o de aerosoles) se obtienen por observación o con medición instrumental. Las variables climatológicas (temperatura media mensual, volumen mensual de precipitación, número mensual de eventos, entre otros) se obtienen a partir del cálculo de las medidas de tendencias central usadas en el estudio del clima (media, mediana, moda) y de la frecuencia de los fenómenos meteorológicos durante un período dado (semanal, decenal, quincenal, mensual o anual). Los consolidados (acumulados y promedios) para un período largo (suele tomarse como referencia un período de al menos 30 años) se conocen como norma climática (condiciones normales).

Para la ciudad, el clima determina la distribución espacial de la temperatura y la humedad del aire, de su circulación atmosférica, de las fuentes de agua, de los fenómenos hidrometeorológicos y climáticos extremos, de las condiciones de estabilidad o inestabilidad atmosférica que inciden en la distribución de contaminantes; por su parte, las condiciones predominantes en el área urbana también presentan un ciclo anual o estacionalidad. Diversas actividades humanas urbanas se ajustan al ciclo anual y a la distribución espacial de las variables climatológicas. La población de la ciudad tiende a ajustarse a esas distribuciones; no obstante, eventualmente esos patrones climatológicos pueden alterarse temporalmente o presentar modificaciones que perduran a largo plazo. Esas alteraciones desajustan la relación clima-sociedad y tienen impactos negativos.

Las anomalías climáticas recurrentes o alteraciones cíclicas de los patrones se deben a la aparición de fases extremas de fluctuaciones del clima respecto de la norma, conocidas como variabilidad climática. La variabilidad altera temporalmente los promedios y la frecuencia de fenómenos extremos en ciclos de semanas-meses (variabilidad intraestacional), años (variabilidad interanual) y decenios (variabilidad interdecenal). Las anomalías climáticas generadas por las fases extremas desajustan la relación clima-funcionamiento de la ciudad con impactos socioeconómicos y ambientales de una magnitud tal que puede equivaler a varios puntos de su PIB o del índice de desarrollo humano (en el gráfico II.1 puede verse la variabilidad de la precipitación en Bogotá; también se señalan los impactos de las fases extremas de la variabilidad de las precipitaciones asociada a los fenómenos El Niño y La Niña). Como se puede apreciar, en la fase asociada a El Niño se registra un déficit de precipitación y aumenta la frecuencia de los incendios; con La Niña aumentan las lluvias y fenómenos tales como inundaciones y deslizamientos (Pabón y Torres, 2007).

GRÁFICO II.1

BOGOTÁ: EFECTOS DE LA VARIABILIDAD CLIMÁTICA

<table>
<thead>
<tr>
<th>Año</th>
<th>Evento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950, abril</td>
<td>El fuerte invierno destruye la cosecha de café del Quindío. En Bogotá, una tempestad fundió varias subestaciones (la del periódico El Tiempo). Gran cantidad de lodo fue arrastrada desde el oriente de la ciudad. Inundaciones en el occidente y sur de la ciudad.</td>
</tr>
<tr>
<td>1965, febrero-marzo</td>
<td>Racionamiento de agua potable en Bogotá. Incendios forestales en las hoya del río San Cristóbal.</td>
</tr>
<tr>
<td>1970, abril</td>
<td>Desbordamiento de la Laguna de Fúquene.</td>
</tr>
<tr>
<td>1992</td>
<td>Racionamiento energético.</td>
</tr>
</tbody>
</table>

B. El clima urbano y las islas de calor

Las características particulares del clima de las ciudades suelen llamarse “clima urbano”. La ciudad modifica el paisaje natural de manera significativa transformando el balance de radiación y el contenido de calor en las áreas urbanizadas. Estas modificaciones provocan cambios en la distribución de la temperatura dando lugar a un fenómeno que se conoce como el efecto de la “isla de calor”, que a su vez produce cambios en la distribución espacial de otras variables como la presión atmosférica, los vientos, la nubosidad y la precipitación, así como en la distribución de contaminantes y los fenómenos meteorológicos extremos. En síntesis, se trata de un cambio significativo en el clima local.

En el gráfico II.2 puede verse el efecto de la isla de calor. La temperatura aumenta en el área urbana en comparación con la del espacio suburban y las zonas rurales. La escala de temperatura muestra la diferencia entre esos espacios, una media de 4ºC que puede variar según las condiciones particulares de cada ciudad. En la imagen II.2 se explican, mediante una imagen infrarroja, las causas del aumento de la temperatura dentro del área urbana. La imagen muestra un incremento de la temperatura provocado por el calor que generan las actividades urbanas y la irradiación del concreto y otros materiales usados en la construcción del espacio urbano. El gráfico II.2 ilustra también el efecto de la vegetación, que funciona como isla de enfriamiento en el interior de la ciudad. Este es uno de los servicios ecosistémicos que pueden ayudar a adaptarse a las consecuencias negativas de la isla de calor y del cambio climático (Grimm y otros, 2008).

El clima urbano se visualiza como una clara desviación de las condiciones que se observarían en un lugar dado si no existiera la ciudad y solo actuaran los factores físico-geográficos mencionados más arriba (latitud, altitud, continentalidad, orografía, entre otros). Dicho clima depende de la forma y estructura de la ciudad y de los procesos o actividades humanas que allí se desarrollan. Tal desviación puede ser muy marcada según la ciudad se encuentre a orillas del mar o de un lago, si la atraviesa un río ancho, si está en valles de escasa altitud o sobre altiplanos o en la montaña. Se puede afirmar que el clima observado en un área urbana es la combinación de las condiciones predominantes de la región y de las que genera el sistema urbano.

Diversos estudios de la región han documentado el fenómeno de la isla de calor. En México, D.F., por ejemplo, los resultados de esos estudios muestran que la temperatura del espacio urbano con respecto sus alrededores es hoy 4°C más alta que a principios del siglo pasado. Las olas de calor (temperaturas superiores a 30°C en la ciudad) fueron siete veces más frecuentes de 1991 a 2011 que durante el período 1877-1887 (véase el gráfico II.3, izquierda). De conformidad con lo anterior, de 1890 a 2003 han aumentado significativamente los episodios de lluvias torrenciales (véase el gráfico II.3, derecha). Otro cambio relevante es que las lluvias torrenciales se registran cada vez más temprano, entre las 12.00 y las 18.00 horas en la actualidad, en comparación con la década de 1940, cuando se producían entre las 19.00 y las 24.00 horas (Jáuregui, 1997 y 2004). Este hecho agudiza el impacto de los fenómenos hidrometeorológicos y climáticos en la ciudad. Es importante señalar que México, D.F. registró a partir de la década de 1950 un crecimiento explosivo que se corresponde con un incremento del fenómeno de la isla de calor (los aumentos de la temperatura y las precipitaciones arriba mencionados).

Por su parte, Oke y otros (1999) documentan la acumulación de calor en el centro de la ciudad durante el día y su liberación durante la noche. Los flujos de calor en el aire están asociados con la absorción de calor por los materiales de las construcciones y la morfología urbana cerrada en esa zona, un fenómeno que incrementa la retención de calor. Según los resultados de estos autores, el aumento de temperatura por la isla de calor es positivo durante la mayor parte del día y oscila entre 1,0° y 4,6°C.
La intensidad de la isla de calor tiene consecuencias importantes en el índice de confort de los habitantes y en su salud, en la disminución de la productividad de la mano de obra y de la actividad urbana (social y económica), así como en el consumo de energía dentro de la ciudad. En un estudio de isla de calor realizado en Santiago por la Universidad de Chile (Romero y otros, 2010) se muestra que los distintos usos del suelo ayudan a explicar las diferencias de temperatura dentro del área urbana; en el estudio es fácil observar que las zonas de menor temperatura, al este de la ciudad, corresponden a las zonas de mayor densidad de zonas verdes y de ingresos más altos. Unas temperaturas más altas también pueden tener consecuencias en la salud de los habitantes urbanos. El caso del ozono es particularmente importante por tratarse de uno de los contaminantes frecuentes en las ciudades de América Latina y con fuertes efectos en la salud (según los resultados del estudio de calidad del aire y la salud en América Latina, IAI). Algunos estudios indican que las condiciones climáticas de México, D.F. y Bogotá (Oviedo, 2009) propician la formación de ozono y que es seguro que en el futuro este fenómeno se agravará a medida que aumente la temperatura. Sin embargo, son pocos los estudios que abordan el cambio en las concentraciones y la producción de contaminantes cuando se registran temperaturas elevadas, y los cambios en las precipitaciones y la humedad atmosférica.

Varios estudios documentan otras consecuencias en la salud asociadas a los cambios de temperatura y las precipitaciones causados por la variabilidad y el cambio climático (Patz y Balbus, 1996, Ziska y otros, 2003). El aumento de temperatura asociado a la isla de calor en las áreas urbanas se ve agudizado por las olas de calor que acompañan a la variabilidad y al cambio climáticos, con importantes consecuencias en la morbilidad y la mortalidad causadas por enfermedades cardiovasculares y respiratorias. Por ejemplo, la ola de calor que se registró en Chicago en 1995 produjo cerca de 437 muertes (Semenza y otros, 1999) y en varios países de Europa, en 2003, más de 30.000 muertes (Conti y otros, 2005). El impacto de las olas de calor depende no solo de los picos extremos de la temperatura y la humedad, sino también de la duración de la temporada de calor. Cuando las temporadas son largas, las consecuencias para la salud se agravan, aumenta el número de personas afectadas y disminuye la actividad urbana.
C. El cambio climático

La modificación más duradera de las condiciones predominantes (la norma climática), denominada cambio climático, se genera en ciclos de largo plazo del clima o por la intervención de las actividades humanas en el sistema climático. Los cambios climáticos han ocurrido desde la formación del planeta, y una prueba de ello son los periodos muy fríos denominados glaciales (enfriamientos globales) y cálidos o interglaciales (calentamientos globales). Desde la intensificación de la actividad humana, sobre todo en los últimos dos o tres siglos, la sociedad ha ido transformando la composición de la atmósfera. Estos cambios están asociados al incremento de GEI y modifican las características de la superficie terrestre que regulan el balance de radiación que mantiene las condiciones climáticas. Así, la actividad humana se ha constituido en una de las causas más importantes del cambio climático.

Según las últimas conclusiones del IPCC (2007), el calentamiento del planeta es innegable, y atribuible a las actividades humanas con un 90% de seguridad. En los últimos 150 años se ha registrado un aumento de la temperatura del planeta de 0,74°C, asociado principalmente a la quema de combustibles fósiles y a procesos de cambio en el uso del suelo (sobre todo, la deforestación). Las concentraciones de dióxido de carbono aumentaron un 35% desde la época preindustrial (1790) hasta 2005 y, para el mismo período, las concentraciones de metano aumentaron un 148%, y un 18% las de óxido nítrico (Conde, 2010). Además del aumento de la temperatura global, también se ha observado un aumento del nivel del mar (de entre 6 y 10 cm desde 1961 hasta 2003) y una disminución de la cubierta de nieve y hielo, hasta tal punto que para el Ártico se habla de una pérdida de alrededor de 3,5 millones de km² de su superficie (IPCC, 2007), si bien posteriormente se hizo público que en septiembre de 2007 la disminución ya era de unos 4,28 millones de km².

Por supuesto, no en todos los puntos del planeta se ha registrado ese aumento de temperatura. Los mayores aumentos se observan hacia los polos, donde la subida observada (1973-1993) alcanza valores que superan ya los 3,5º C. También en las regiones en las que se ha observado un mayor calentamiento se han presentado variaciones más marcadas de los recursos naturales (físicos: Nieve, hielo y terreno congelado; hidrología; procesos costeros, y biológicos: terrestres, marinos y de agua dulce) durante el período 1970-2000 (IPCC, 2007; Rosenzweig y otros, 2007). Más de 557 estudios con más de 29.000 series de datos —la mayor parte de ellos europeos, por la mayor capacidad de este continente para elaborar este tipo de estudios— muestran cómo se han reducido los caudales de los ríos en latitudes altas, una disminución que constituye un alto riesgo en lo que respecta a la disponibilidad de agua. Asimismo, y en esas regiones, se han documentado migración de aves y algunos peces, cambios en las fechas de crecimiento y floración de la vegetación, desplazamiento de varias especies a regiones o latitudes altas, así como cambios en la abundancia y composición de comunidades en ecosistemas.

Se podría pensar que 0,74º C es muy poco (menos de un grado centígrado) y que no debería preocupar a la humanidad, y que es posible también que los impactos estén asociados a otros procesos. Sin embargo, y para empezar, se trata de un aumento de temperatura global, y los aumentos a nivel regional pueden rebasar con mucho ese valor. Además, en el período 1970-2000 no todos los años se registraron los mismos valores de temperatura media anual; hubo años mucho más calientes que otros, e incluso años en los que las temperaturas máximas (extremas) pusieron en peligro la salud, la agricultura y, en general, el bienestar humano. Esas temperaturas extremas anómalas forman parte de fenómenos que se denominan eventos extremos o raros. Así, en la mayoría de las regiones terrestres han aumentado (con un 90% de seguridad) los días y las noches muy cálidos, y también los llamados golpes de calor. A ello hay que sumarle el aumento de las lluvias torrenciales y también la intensidad y frecuencia de las sequías extremas. Las subidas de la temperatura son aún más agudas en las áreas urbanas debido al efecto de la isla de calor antes descrita, lo que agrava las consecuencias negativas para la salud, el funcionamiento y la economía urbanas y el consumo de energía. Por otra parte, durante ese período los huracanes de categorías 4 y 5 prácticamente se han duplicado. No todos han llegado al continente,
sin duda, pero el aumento de la frecuencia indica que por su causa ha aumentado el riesgo de pérdidas humanas y de infraestructuras en áreas urbanas.

No hay que olvidar que los impactos biofísicos observados son los propios con un mundo más caliente. Sin embargo, los sistemas humanos —áreas urbanas, las industrias agropecuaria, pesquera y forestal, así como la salud y el manejo de los recursos hídricos, por ejemplo— no dependen únicamente de las condiciones climáticas, sino también de las condiciones sociales, económicas y políticas de las regiones posiblemente afectadas. Este hecho dificulta mucho más el asociar al calentamiento global los impactos observados en estos sistemas que los observados en los sistemas naturales. Sin embargo, bastaría con los cambios observados, sobre los que se tiene un alto grado de certidumbre, para impulsar a los gobiernos, las organizaciones sociales y las comunidades para que respondan al cambio climático tanto en lo relativo a la adaptación como a la mitigación. Si bien hay un margen de incertidumbre, los costos de la inacción (o falta de toma de decisiones) resultan más onerosos que tomar decisiones, aun cuando estas se buscan en escenarios climáticos.

Para el futuro se proyectan aumentos de temperatura de entre 1,8° y 4,0° C, aunque podrían ser más altos. Así, si bien lo observado hasta ahora es innegable, el futuro es incierto, y por esa razón se describe como un rango de cambio posible (Liverman; Conde, 2010). Esa incertidumbre constituye un serio problema de comunicación entre la ciencia y la sociedad y complica la reducción de los riesgos futuros asociados al cambio climático mundial y regional.

Es importante tener en cuenta que el sistema climático es sumamente complejo y que aún hay áreas de conocimiento en las que se tienen grandes incertidumbres en lo que respecta a la representación del clima en diferentes regiones del planeta. Por ejemplo, poco se sabe del efecto que tiene sobre el clima el vapor de agua que se produce en la estratosfera a partir del metano (digamos, por encima de los 10 km de altura). Tampoco es sencillo incluir el efecto de los aerosoles producidos por acciones humanas, y de la cubierta de carbón —hollín— sobre las superficies nevadas. Entre los procesos naturales que aún no se comprenden bien, se encuentran el papel de las nubes —altas y bajas— y los cambios en la radiación solar. Por otra parte, aún no pueden extraerse conclusiones sólidas sobre lo que está sucediendo en el Polo Sur. Las variaciones en la extensión del hielo del Antártico continúan presentando variaciones interanuales, estacionales y localizadas en algunas regiones, pero sin una tendencia estadísticamente significativa. Tampoco se cuenta con pruebas suficientes para determinar la existencia de tendencias en la circulación meridional de retorno (CRM) de los océanos, que permite, por ejemplo, que en los Países Bajos se puedan cultivar tulipanes a pesar de que por su latitud las temperaturas deberían ser muy bajas, o la aparición de fenómenos a pequeña escala, como tornados, granizo, relámpagos y tormentas de polvo.

No obstante, la incertidumbre no significa desconocimiento total o confusión, y con un buen tratamiento o abordaje de esa incertidumbre es posible planificar a largo plazo. Es imposible hacer pronósticos para el clima que tendremos de 2020 a 2100. La incertidumbre no solo se debe al conocimiento, aún limitado, que tenemos del sistema climático, sino también al hecho de que el cambio climático observado depende del uso que en el futuro hagamos de los combustibles fósiles, de las tasas de deforestación, de las tendencias de cambio en el uso del suelo; además, y asociado a ello, del crecimiento poblacional y de los cambios que registren las economías a nivel mundial y regional, por citar algunos fenómenos sociales y económicos que determinarán la composición atmosférica futura (Conde, 2010). Asimismo, cuanto más nos alejemos en el tiempo —pensemos, por ejemplo, en 2100—, los mejores modelos climáticos existentes empiezan a divergir en sus proyecciones aunque utilicen los mismos fundamentos de la física y la química atmosféricas. El problema se agrava si lo que se quiere es saber del clima futuro en regiones o localidades reducidas. Por ejemplo, la pregunta: ¿Lloverá más en 2030 en el patio de mi casa?, no tiene todavía una respuesta científica válida.

En consecuencia, esas incertidumbres —que no ignorancia— impiden hacer pronósticos climáticos a tan largo plazo (Conde, 2010). No obstante, para estudiar los posibles impactos de un
clima cambiante, así como las regiones y sectores más vulnerables a esos cambios, los científicos han construido los llamados “escenarios climáticos”. Para generar estos escenarios se utilizan los modelos más avanzados, denominados modelos de circulación general acoplados al océano (AOGCM, por sus siglas en inglés). Estos escenarios necesitan diferentes “futuros” de emisiones, según las distintas trayectorias socioeconómicas mundiales y regionales; se los denomina también “escenarios” de emisiones (B1, A1T, B2, A1B, A2 y A1FI; véanse las definiciones en el cuadro II.2). Con esas emisiones se proyectan los cambios que registrarán las concentraciones de GEI —todo un abanico de posibilidades—, lo que permite también construir escenarios de cambios de las temperaturas globales, del aumento del nivel del mar y de los deshielos en las diferentes regiones del planeta.

CUADRO II.2
LOS ESCENARIOS DE EMISIONES (IEEE)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Rápido crecimiento económico; el crecimiento poblacional alcanza su máximo a mediados del siglo XXI; los mecanismos de mercado dominan la economía. Subdivisiones: A1FI: dependencia de combustibles fósiles; A1T: dependencia de combustibles no fósiles; A1B: dependencia balanceada de fuentes de energía.</td>
</tr>
<tr>
<td>A2</td>
<td>Sin dependencia económica regional; conservación de identidades locales; aumento continuo de la población; crecimiento económico a nivel regional.</td>
</tr>
<tr>
<td>B1</td>
<td>Uso de tecnologías limpias y eficaces; reducción de consumo material; soluciones globales a problemas económicos y medioambientales; mejor distribución de la riqueza; el crecimiento poblacional alcanza su máximo a mediados del siglo XXI.</td>
</tr>
<tr>
<td>B2</td>
<td>Soluciones locales a problemas económicos y medioambientales; crecimiento poblacional menor que en A2; menor cambio tecnológico que en B1 y A1.</td>
</tr>
</tbody>
</table>

Volviendo sobre el tema del clima urbano, cabe señalar que se ve afectado por la variabilidad y el cambio climático. Como hemos señalado más arriba, el cambio climático en la ciudad es la combinación de dos procesos, uno mundial y otro local. Por ejemplo, en el caso de la precipitación, aunque las oscilaciones de la variabilidad climática son sincrónicas en las dos estaciones, las tendencias a largo plazo son inversas: si fuera de la ciudad la señal global apunta a una disminución de la precipitación, dentro de la ciudad apunta a un marcado aumento de las lluvias.

Las fases extremas de la variabilidad climática cambian la frecuencia, la intensidad o la duración de los fenómenos meteorológicos (aumenta la de algunos fenómenos, disminuye la de otros), lo que incide en las amenazas y los riesgos asociados. El cambio climático se produce lentamente, a largo plazo, y cambia las características de los fenómenos extremos. Es necesario recalcar que, además de esos fenómenos, los de baja y mediana intensidad pueden, por la frecuencia con que se producen, tener costos sociales importantes a largo plazo. También es necesario tener en cuenta que el cambio climático incide en aspectos relacionados con la calidad del aire.

Tampoco hay que olvidar que la señal global y la local pueden interactuar de manera tal que la primera podría acentuar en algunos casos, o suavizar en otros, los cambios que se están registrando a escala urbana. La modificación de los patrones climáticos establecidos para la ciudad implica un desajuste paulatino en la relación clima-sociedad en el sistema urbano, con consecuencias tanto negativas como positivas que requieren ser evaluadas para reducir las primeras o aprovechar las segundas. Por ello es
importante que en la planificación del crecimiento urbano se tengan en cuenta la variabilidad y el cambio climáticos. La planificación urbana procura el bienestar de la población y a tal efecto debe considerar diversos factores (físico-bióticos, ambientales, económicos, políticos, culturales); el clima es uno de los que no se debe ignorar. Dado que este factor ambiental genera de manera recurrente anomalías debidas a su variabilidad, y ante las pruebas que demuestran que se está produciendo un cambio climático acelerado, es urgente que las áreas urbanas contemplan esos cambios a la hora de diseñar sus planes de crecimiento actual y futuro.

En cada ciudad, los efectos de la variabilidad y el cambio climáticos son diferentes. La consideración de estos aspectos en la planificación urbana implica disponer de conocimientos e información acerca de:

- Las particularidades del clima actual y su relación con los procesos socioeconómicos que se desarrollan dentro de la ciudad.
- La distribución espacial y el ciclo anual de los fenómenos meteorológicos extremos en el ámbito de la ciudad o en su zona de influencia, y la evaluación de las amenazas y los riesgos asociados a esa distribución de los fenómenos meteorológicos e hidroclimáticos extremos.
- Las anomalías climáticas y las variaciones que estas provocan en las amenazas, así como los impactos en diferentes sectores socioeconómicos.
- Las tendencias a largo plazo, los posibles cambios futuros (estimados con diversos escenarios) del clima local y regional y el impacto de dichos cambios en la ciudad.

Así pues, es necesario contar con conocimientos acerca del clima urbano y su relación con los procesos que inciden directamente en el funcionamiento de la ciudad; conocer los impactos de las anomalías asociadas a fases extremas de la variabilidad y el cambio climáticos; por ejemplo, los riesgos que pueden correr diferentes sectores socioeconómicos y zonas de la ciudad.

Junto con el aumento de la temperatura mundial en los escenarios del cambio climático (de 1,8º a 4º C), un aumento que, como ya hemos señalado, podría ser más alto (IPCC, 2007), es importante tener en cuenta que la subida del nivel del mar podría ser de entre 18 y 59 cm (la observada hasta la fecha es de 6 a 10 cm), incluso si se estabilizan las concentraciones de CO₂. En cuanto al hielo marino del Ártico, hay proyecciones que indican que a finales de este siglo puede desaparecer por completo durante el verano. Otras proyecciones alarmantes son el aumento de las olas de calor, que pueden ser más intensas y más frecuentes; más inundaciones en las costas, mayor intensidad de las sequias y unas tormentas tropicales y huracanes más intensos. En el diagrama II.1 se presentan los impactos potenciales en función del grado alcanzado por el cambio climático en sectores críticos de la sociedad. Una subida de la temperatura superior a 2ºC se considera un umbral crítico por encima del cual los impactos se vuelven graves (Richardson y otros, 2009; IPCC, 2012).

A continuación se presentan tres cuadros con un resumen de información que ilustra la importancia de la información climática para las áreas urbanas. En el cuadro II.3 se presentan en forma más detallada los principales impactos proyectados y asociados al clima en sectores clave, según un informe reciente del IPCC sobre fenómenos extremos durante el siglo XXI. Entre ellos destacan los riesgos de desastres en los asentamientos humanos y los impactos que amenazan el abastecimiento de recursos básicos (agua, energía, alimentos). En el cuadro II.4 se presentan con mayor detalle estimaciones para las ciudades de los impactos incrementales del cambio climático y los riesgos para los habitantes urbanos. El riesgo de los posibles impactos asociados al cambio climático ilustra la importancia de tener en cuenta, en la planificación urbana, el corto, mediano y largo plazos.
CUADRO II.3

**RESUMEN POR SECTOR DE LOS PRINCIPALES IMPACTOS PROYECTADOS, DEBIDOS A CAMBIOS EN EL CLIMA Y A FENÓMENOS MÉTÉOROLÓGICOS EXTREMOS **
DURANTE EL SIGLO XXI (SIN TENER EN CUENTA LA CAPACIDAD DE ADAPTACIÓN)

<table>
<thead>
<tr>
<th>Fenómeno y dirección de la tendencia</th>
<th>Probabilidad de las tendencias futuras basadas en proyecciones del siglo XXI a partir del Informe especial sobre escenarios de emisiones (IEEE)</th>
<th>Ejemplos de fenómenos y principales impactos</th>
</tr>
</thead>
<tbody>
<tr>
<td>En la mayoría de las zonas de la Tierra, menos días y noches frías; días y noches más cálidos y más frecuentes; días y noches calientes.</td>
<td>Prácticamente seguro</td>
<td>Industria, asentamientos y sociedad</td>
</tr>
<tr>
<td>Periodos cálidos/días de calor; aumenta la frecuencia en la mayor parte de la Tierra.</td>
<td>Muy probable</td>
<td>Reducción de la demanda de energía para la calefacción; aumento de la demanda de refrigeración; disminución de la calidad del aire en las ciudades; menos interrupciones del transporte debido a la nieve, el hielo y los efectos en el turismo de invierno.</td>
</tr>
<tr>
<td>Casos de precipitaciones intensas; aumenta su frecuencia en la mayoría de las zonas.</td>
<td>Muy probable</td>
<td>Impactos negativos en asentamientos, comercio, transportes y sociedades a causa de inundaciones; presiones sobre la infraestructura urbana y rural; pérdida de propiedades.</td>
</tr>
<tr>
<td>Áreas afectadas por la mayor frecuencia de sequías.</td>
<td>Probable</td>
<td>Escasez de agua para los asentamientos, la industria y las sociedades; reducción del potencial de energía hidroeléctrica; causa de migraciones humanas.</td>
</tr>
<tr>
<td>Aumento de la actividad ciclónica tropical intensa.</td>
<td>Probable</td>
<td>Perturbaciones por inundaciones y vientos fuertes; las compañías privadas pueden retirar la cobertura de seguro en zonas vulnerables; causa de migraciones humanas; pérdida de propiedades.</td>
</tr>
<tr>
<td>Aumento en la incidencia de la elevación extrema del nivel del mar.</td>
<td>Probable</td>
<td>Costos de la protección costera en comparación con el costo de reubicación; potencial para el movimiento de población e infraestructura.</td>
</tr>
</tbody>
</table>

CUADRO II.4
IMPACTOS INCREMENTALES DEL CAMBIO CLIMÁTICO Y RIESGOS PARA LOS HABITANTES Y SISTEMAS URBANOS

<table>
<thead>
<tr>
<th>Impactos incrementales en sistemas urbanos</th>
<th>Impactos en los habitantes urbanos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiente construido</td>
<td></td>
</tr>
<tr>
<td>• Estrés en cimientos de los edificios</td>
<td>• Enfermedades: estrés por el calor, golpes de calor, desnutrición, enfermedades transmitidas a través del agua, asma, discapacidad física y mental</td>
</tr>
<tr>
<td>• Caminos dañados</td>
<td>• Exposición por construcciones deficientes</td>
</tr>
<tr>
<td>• Cambios en los vectores de enfermedades</td>
<td>• Interrupción de la prestación de servicios básicos y de acceso a suministros</td>
</tr>
<tr>
<td>• Estrés en los sistemas de aguas pluviales y residuales</td>
<td>• Inestabilidad de la vivienda</td>
</tr>
<tr>
<td>• Estrés en los sistemas de tratamiento de agua</td>
<td>• Pérdida de posesiones y reubicación</td>
</tr>
<tr>
<td>• Perturbaciones en la navegación y en los puertos</td>
<td>• Pérdida de los medios de vida</td>
</tr>
<tr>
<td>• Aumento de la demanda de energía</td>
<td>• Fragmentación de la comunidad</td>
</tr>
<tr>
<td>• Incremento en los daños de la infraestructura vial</td>
<td>• Exposición a toxinas y desechos relacionados con las inundaciones</td>
</tr>
<tr>
<td>• Aumento de la demanda de agua</td>
<td></td>
</tr>
<tr>
<td>Entorno natural</td>
<td></td>
</tr>
<tr>
<td>• Erosión de costas, alteraciones en los ecosistemas y humedales</td>
<td>• Perturbaciones en la disponibilidad de agua potable, alimentos y otros suministros</td>
</tr>
<tr>
<td>• Salinización de los recursos hídricos</td>
<td>• Escasez de agua</td>
</tr>
<tr>
<td>• Inestabilidad de las laderas</td>
<td>• Escasez de alimentos; precios altos de los alimentos</td>
</tr>
<tr>
<td>• Sobreen explotación de aguas subterráneas</td>
<td>• Cortes de electricidad</td>
</tr>
<tr>
<td>• Reducción de los espacios verdes y peores condiciones de los cultivos, incluida la agricultura urbana</td>
<td></td>
</tr>
<tr>
<td>• Aumento de la contaminación de la escorrentía</td>
<td></td>
</tr>
<tr>
<td>• Incremento del efecto ‘isla de calor’</td>
<td></td>
</tr>
<tr>
<td>• Aire más contaminado</td>
<td></td>
</tr>
</tbody>
</table>

D. Fuentes de información climática y sugerencias útiles para facilitar el acceso a ellas

La planificación urbana requiere conocer los patrones climatológicos que aseguran el funcionamiento de la ciudad, incluidas las particularidades de la variabilidad climática. Las fases extremas de esa variabilidad alteran la frecuencia de diversos fenómenos, incluidos el cambio climático que está ocurriendo y sus pautas en el futuro.

Es importante contar con información sobre los patrones climatológicos (promedios multianuales de las variables y su distribución espacial y ciclo anual; amplitud del ciclo anual y del ciclo diario). No obstante, muchas de las decisiones que tienen que tomarse para orientar el crecimiento de la ciudad requieren también datos e información sobre la frecuencia de eventos (fenómenos) extremos. Por ejemplo, el diseño de los sistemas de drenaje pluvial o la identificación de posibles zonas inundables debe contar con datos sobre precipitación extrema diaria disponibles cada hora.

Es conveniente analizar la información sobre la variabilidad teniendo en cuenta las anomalías climáticas (alteración de los promedios y de las frecuencias de los fenómenos extremos); la distribución espacial de las anomalías climáticas y su frecuencia o recurrencia, y la información sobre las tendencias de cambio climático en curso (cuáles son esas tendencias, qué implican).

Al invertir en fuentes de información meteorológica y climática, las áreas urbanas fortalecen su capacidad a la hora de tomar decisiones clave para su desarrollo. Es conveniente priorizar el carácter público de esas fuentes, ya que así se garantizan la transparencia y la accesibilidad para diferentes actores.

Los servicios meteorológicos nacionales, distritales y municipales miden diariamente los valores de temperaturas (máxima, mínima, media), de precipitación, días húmedos, el vapor de agua, nubosidad.
También los servicios nacionales participan en el desarrollo de diagnósticos y pronósticos día a día (meteorológicos), hasta un máximo de dos semanas, y de pronósticos climáticos, sobre todo si se tiene información sobre elementos que fuerzan las condiciones normales, como es el caso de la formación de huracanes o de manifestaciones graves de El Niño o la Niña, por ejemplo.

Las comunicaciones nacionales que cada país de América Latina prepara para la Convención Marco de las Naciones Unidas sobre el Cambio Climático contienen escenarios del cambio climático a nivel nacional y son una información disponible, como referencia, para los encargados de tomar decisiones, los planificadores y los actores urbanos.

En el cuadro II.5 se presentan algunas fuentes de datos públicas que permitirían realizar análisis locales, regionales o mundiales. En algunos casos se cuenta con pronósticos del estado del tiempo, del clima y de escenarios de cambio climático regional y mundial.

CUADRO II.5
RESOLUCIONES ESPACIALES Y TEMPORALES: TIPOS DE DATOS Y FUENTES

<table>
<thead>
<tr>
<th>Tipo de datos base</th>
<th>Fuente</th>
<th>Resoluciones temporales y espaciales. Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>México, Centroamérica y el Caribe</td>
<td>http://iridl.ldeo.columbia.edu/SOURCES/UNAM/gridded/monthly/v0705/dataset_documentation.html</td>
<td>Datos mensuales (1901-2002). 140° O a 59° O y de 4.75° N a 45.25° N. Mayor resolución: 0.5° x 0.5°</td>
</tr>
</tbody>
</table>
Cuadro II.5 (conclusión)

<table>
<thead>
<tr>
<th>Tipo de datos base</th>
<th>Fuente</th>
<th>Resoluciones temporales y espaciales. Variables</th>
</tr>
</thead>
</table>
| Generadores de clima (Weather Generators) | *LARS weather generator
*ClimGen Climate Data Generator | |

Fuente: Elaboración propia.

Bibliografía

Ziska, L. y otros (2003), “Cities as harbingers of climate change: common ragweed, urbanization, and public health”, *Journal of Allergy and Clinical Immunology*, vol. 111, N° 2, Amsterdam, Elsevier.
III. El papel de las áreas urbanas en la mitigación de los gases de efecto invernadero

Landy Sánchez, Cristiane Carvalho y Ricardo Jordán

Los gobiernos de las ciudades se enfrentan al dilema de atender de manera integrada las demandas de su población, el uso de recursos naturales y la generación de emisiones GEI asociadas al crecimiento urbano y económico. A nivel mundial, las áreas urbanas generan el 67% de las emisiones GEI provenientes del consumo energético (AIE, 2008), pero su peso en las emisiones nacionales varía según los países y refleja su tamaño y su grado de centralidad en las economías nacionales y en la provisión de servicios y bienes, por lo que es necesario considerar las emisiones urbanas en el contexto en que se producen (Satterthwaite, 2008). Debido al nivel de emisiones urbanas, la participación de las ciudades es indispensable en las tareas de mitigación, a la vez que sus recursos económicos y humanos potencian sus capacidades para implementar las medidas requeridas (Dodman, 2009).

En respuesta a estos retos, son prometedoras las iniciativas que en la última década han proliferado en las ciudades y que han ganado peso en la implementación de los planes y proyectos de mitigación nacional e internacional. Si bien no exentas de retos, las iniciativas locales han mostrado que las medidas tomadas tienen efectos sobre las emisiones GEI, a la vez que beneficios adicionales sobre la salud, la infraestructura urbana y el desarrollo social, y que potencian las inversiones de los gobiernos y sus efectos beneficiosos sobre los residentes urbanos (IPEA, 2011). Las medidas implementadas muestran que las opciones de mitigación no se contraponen con las prioridades de crecimiento económico ni con la búsqueda del bienestar social de la población. De hecho, en un contexto económico y energético internacional cambiante, las políticas de mitigación ofrecen posibilidades para el desarrollo local y contribuyen a construir ciudades con mayor calidad de vida.

Los retos de mitigación y las opciones de política para hacerles frente difieren significativamente entre ciudades y son un reflejo de sus diferencias económicas, sus condiciones climáticas, su estructura urbana y perfil demográfico, así como de las instituciones y actores políticos locales. Ciudades de diversos tamaños, presupuestos y distintos tipos de organización institucional pueden optar entre un abanico de medidas de mitigación que mejor respondan a las especificidades locales y a sus capacidades de gestión.

6 Los autores contaron con la colaboración de João Alves, Freddy Arteaga, Laura Dawidowski, Claudia Leite, Francisco Martínez y Diana Motta.
En este capítulo se analizan medidas en ámbitos clave como el transporte, la energía, las infraestructuras y los servicios urbanos. Al largo del texto se analizan las oportunidades y retos a que se enfrentan los gobiernos a la hora de implementar medidas de mitigación, y se presentan casos concretos de aplicación. Las experiencias en ciudades muestran la necesidad de redefinir la gestión local en lo relativo a ejes de acción, instrumentos y actores, a fin de que la sostenibilidad pase a formar parte de la agenda pública de las ciudades. La agenda de mitigación urbana de América Latina exige que se preste atención a las marcadas diferencias entre las áreas urbanas y dentro de ellas, atendiendo las necesidades de energía de los más pobres mientras se reduce la demanda de los sectores más dinámicos; es decir, las prioridades de la mitigación urbana en la región suponen encontrar los mecanismos que permitan conciliar desarrollo local, equidad y sostenibilidad. En ese camino serán necesarias una pluralidad de medidas estatales y no gubernamentales y nuevas maneras de articular dichas iniciativas.

A. Población y crecimiento económico: ¿aumento de emisiones?

En el gráfico III.1 se presenta la relación entre emisiones de dióxido de carbono y niveles de urbanización para los países de América Latina. La tendencia general muestra que, a mayor urbanización, más altos son los niveles de emisiones, aunque en países como el Brasil y el Perú el acoplamiento entre ambas variables no es tan evidente debido a que la mayor parte de sus emisiones de CO₂ provienen del sector agrario y forestal. Además, esa relación está presente de manera más clara cuanto más altos son los ingresos per cápita, a la vez que la forma de la urbanización también influye sobre los niveles de emisiones.

Además de una tendencia a la concentración en grandes urbes, en América Latina se aprecia la expansión territorial de las ciudades, sobre todo de las grandes áreas metropolitanas, que a menudo ha ido acompañada de una disminución de la densidad urbana (ONU-Hábitat, 2012). Esta tendencia es preocupante dada la relación entre urbanización expansiva y mayores emisiones GEI, tanto por el aumento del número y la distancia de desplazamientos en vehículos motorizados, la mayor congestión vial y el consumo energético, como por la relación entre suburbanización y cambio de uso del suelo (Dumreicher y otros, 2000; Aguilera, 2004). Es decir, que en la mayoría de los países de América Latina el principal desafío no es el crecimiento poblacional ni la urbanización per se, sino la forma que esta adopta. De ahí que la planificación territorial de las ciudades desempeñe un papel central en la reducción de las emisiones GEI. Como se analiza más adelante, la visión territorial es un elemento clave de los programas de reducción de emisiones asociadas al transporte, la eficiencia energética y la protección de reservas ecológicas urbanas.

La expansión territorial y demográfica de las áreas urbanas conllevó la diversificación y difusión de fuentes de emisiones, a la vez que el surgimiento de nuevas zonas metropolitanas consolidó las nuevas contribuciones a las emisiones totales de cada país. En 2011, en América Latina existían 62 ciudades con más de un millón de habitantes, y ocho de ellas tenían más de cinco millones (ONU-Hábitat, 2012). El crecimiento de las grandes ciudades impone retos a la provisión de servicios y vivienda con baja demanda de carbono, pero las megaciudades también suelen contar con una mejor dotación de servicios (Cohen, 2006) y su escala ofrece ventajas para la innovación y la actividad económica (Bettencourt y otros, 2007). Las ciudades medianas y pequeñas concentran la mayor parte de la población y del crecimiento demográfico mundial, y su estructura económica y sus necesidades de infraestructuras hacen necesario el desarrollo de una agenda específica. Un buen ejemplo de esta visión la constituye el programa Sustentabilidad ambiental en ciudades intermedias, desarrollado en México por el Instituto Nacional de Ecología y Cambio Climático. En él destacan tres elementos innovadores: 1) se centra en ciudades de tamaño medio y no en las grandes metrópolis; 2) se implementa de manera coordinada con los gobiernos locales, y 3) incluye explícitamente objetivos de mitigación en una agenda más amplia de sustentabilidad urbana, que abarca temas como el manejo de residuos y
sustancias químicas, la calidad del aire, la movilidad urbana, el uso del suelo, los recursos hídricos y la gobernanza ambiental.

GRÁFICO III.1
AMÉRICA LATINA: EMISIONES DE CO₂ PER CÁPITA Y URBANIZACIÓN, POR PAÍSES, 2008
(En toneladas métricas de CO₂ per cápita)

Fuente: Elaborado por el autor sobre la base de Banco Mundial, Indicadores del cambio climático, 2013.

Las áreas urbanas de América Latina y el Caribe deben lograr que el crecimiento de la población consumidora de bienes y servicios y el aumento de inversiones en infraestructuras no sean necesariamente sinónimos de aumento de emisiones GEI. Es importante encontrar modelos y formas que permitan que el crecimiento urbano se desacople del impacto socioambiental y pueda seguir una pauta de desarrollo en el marco de una senda baja en carbono. En el gráfico III.2 se ilustra el impacto en las emisiones de CO₂ de los modelos alternativos de desarrollo a nivel global. Cada línea representa un escenario de emisiones de CO₂ según distintas trayectorias socioeconómicas que el planeta podría seguir en las futuras décadas (véase el capítulo II)7. La línea A1 muestra una situación en que la demanda energética se mantiene equilibrada entre combustibles fósiles y no fósiles; esta senda implica un aumento de las emisiones CO₂ más de dos veces superior a la de la alternativa de cambiar a energías no fósiles (A1T). El escenario B1 muestra una senda de desarrollo distinta, que en este caso se orienta hacia una estructura económica con menor demanda energética y el uso de tecnologías limpias y eficaces, y que a mediano y largo plazo tendría un mayor impacto en la reducción de emisiones. En el gráfico puede verse que diferentes caminos de desarrollo económico nos llevan a distintos futuros ambientales; también se señala el amplio espectro de políticas que los gobiernos nacionales y subnacionales pueden implementar y las consecuencias de esas políticas para el cambio climático.

7 Cada una de las familias de escenarios (A1, B1) tiene distintos supuestos socioeconómicos en relación con la manera en que evolucionará el planeta; por ejemplo, diferencias en la tasa de crecimiento poblacional y económico, así como grado de convergencia o divergencia en esa tendencia (véase el capítulo II).
B. Los inventarios de emisiones: calcular para reducir

Las actividades que se desarrollan en las ciudades definen el tipo y el nivel de las emisiones que llegan a la atmósfera, y su extensión y topografía tienen una influencia relevante; por ejemplo, los compuestos que emiten los vehículos aumentan en las ciudades más extensas por el kilometraje medio recorrido, mientras que las ciudades que poseen un número importante de pendientes se caracterizan por mayores consumos específicos. De ahí que las políticas clásicas de disminución de emisiones en este sector se orienten hacia la reducción del consumo (por ejemplo, fomentando el uso de bicicletas o favoreciendo el transporte colectivo), pero también hacia la sustitución de combustibles, incorporando gas natural o biocombustibles. Por otra parte, las medidas de reducción del aporte de las fuentes fijas, vinculadas al consumo domiciliario, industrial y comercial, apuntan a políticas de uso racional de la energía y de incorporación de tecnologías más eficaces.

El seguimiento de la eficacia de los logros alcanzados con la implementación de esas medidas puede llevarse a cabo mediante la confección periódica y sistemática de inventarios de emisiones, que contemplen no solo los GEI, sino también las emisiones de otros compuestos cuyas concentraciones en la atmósfera son relevantes para la salud o como precursores de otros compuestos. Los resultados obtenidos con estas herramientas, junto con la comprensión del papel que desempeñan los patrones demográficos, el desarrollo económico y las condiciones ambientales en la evolución de las emisiones, proporcionan
la base necesaria para analizar los efectos adversos registrados en el pasado y la vulnerabilidad de los sistemas en el futuro, así como para dar seguimiento a las estrategias y políticas de mitigación (véase el capítulo II).

Prácticamente todos los países de América Latina han confeccionado, como parte de los compromisos asumidos en la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), inventarios de GEI a nivel de país (dióxido de carbono —CO₂—, metano —CH₄—, óxido nitroso —N₂O—, hidrofluorocarbonos —HFC—, perfluorocarbonos —PFC— y hexafluoruro de azufre —SF₆—) y gases precursores (CO —monóxido de carbono—, óxidos de nitrógeno —Noₓ—, COV —compuestos orgánicos volátiles— y SO₂ —dióxido de azufre—). Esta actividad suele llevarse a cabo con financiamiento de organismos internacionales, siguiendo la metodología definida en las directrices y las guías de buenas prácticas del IPCC, cuya aplicación asegura la obtención de inventarios comparables entre los distintos países. Además, cabe señalar las iniciativas que se ocupan de desagregar los inventarios de todos los países del mundo en grillas equidistantes, por ejemplo; 0,5° x 0,5°, utilizando para ello indicadores socioeconómicos como la densidad de población, el consumo de energía y el tipo de suelo, entre otros. Los productos así obtenidos forman parte de la información global sobre emisiones antropogénicas.

Ante la falta de inventarios desarrollados a nivel local, algunas ciudades utilizan esos datos como referencia, como es el caso de Lima. Sin embargo, según ejercicios realizados, esas estimaciones globales suelen diferir mucho de los datos recabados localmente, razón por la que se intenta resolver el problema con las estimaciones de cada ciudad.

Los inventarios de emisiones urbanas surgen como parte de los planes de gestión de la calidad del aire, enfocados en el análisis de los contaminantes con efectos adversos sobre la salud humana, o sea, los gases precursores más el material partículado y el ozono. La estimación de GEI es una actividad que algunas ciudades de la región han iniciado recientemente; para llevarla a cabo se suelen utilizar las mismas metodologías aplicadas a los otros compuestos. En América Latina, las ciudades pioneras fueron México, D.F. y São Paulo, seguidas por Santiago. Si bien se han sumado un número importante de ciudades como Bogotá, Buenos Aires, Concepción, Medellín y Belo Horizonte, entre otras, el mapa presenta todavía muchas ausencias. Dado que estas actividades suelen financiarse con fondos locales, la realización de inventarios es una tarea pendiente en muchas jurisdicciones de América Latina, ya que, en lugar de considerarse parte de una agenda común, compite por recursos con otras medidas, como el monitoreo de la calidad del aire.

Dicho de manera sencilla, el cómputo de las emisiones se realiza mediante la multiplicación del dato de la actividad generadora (por ejemplo, m³ de gas natural quemado o kilómetros anuales recorridos por la flota vehicular) por el factor de emisión correspondiente (expresado como kilogramo de contaminante por unidad de actividad). Si bien esta operación es sencilla, el desafío radica en la compilación de datos de actividad adecuados y la selección de factores de emisión representativos de las condiciones locales. Mientras que los datos de actividad deben reflejar la variedad de fuentes emisoras locales, los factores de ponderación han de reflejar las condiciones en que se realizan las actividades y las condiciones climáticas que inciden en su efecto contaminante. Por ejemplo, los factores de emisión de las metodologías confeccionadas en los países desarrollados dan cuenta del predominio de tecnologías modernas, pero su aplicación en América Latina, donde las tecnologías modernas están menos extendidas, da lugar a mediciones menos exactas. Sin embargo, este hecho no implica que todos los esfuerzos...

8 Las medidas de control de los gases y precursores tienen distintos impactos potenciales sobre el cambio climático; a fin de contar con un referente para valorar las medidas, se han desarrollado diversos instrumentos, entre ellos el “Potencial de Cambio Climático” (PCC) (Artículo 3 de la CMNUCC), que mide precisamente la contribución de cada GEI al calentamiento global. Ese PCC solo puede medirse para un período determinado y a una concentración de gases dada. El CO₂ se emplea como el referente con el que se comparan los otros gases (así, el CO₂ tiene un PCC = 1). En IPCC (2007, cap. 2) puede consultarse un cuadro con las medidas detalladas por cada gas [en línea] http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html#table-2-14.
comienzan a cero. Las ciudades pueden aprender de los avances científicos y tecnológicos alcanzados por otras ciudades con características similares y adaptar las metodologías a sus condiciones locales.

La importancia que para la política pública tiene una adecuada medición se pone de manifiesto en el caso prototípico de las emisiones vehiculares. En años recientes, en distintas ciudades de América Latina han mejorado las estimaciones de gases precursores y de material particulado de los vehículos livianos y, más recientemente, también las de vehículos pesados. No obstante, no sucede lo mismo para el CH₄ y el N₂O. Esta situación tiene implicaciones concretas para la evaluación de la política ambiental; por ejemplo, en la década de 1990 se impulsó en Buenos Aires una política de reemplazo de un porcentaje importante de vehículos de gasolina y diésel por gas natural. Si bien las emisiones de CO₂ se redujeron, las de CH₄ y N₂O aumentaron, lo que puso en entredicho la eficacia del programa (D’Angiola y otros, 2010). Sin embargo, para poder evaluar cabalmente el impacto ambiental es necesario mejorar la medición de los dos compuestos señalados.

De las experiencias de inventarios locales pueden aprenderse importantes lecciones para su implementación en otras urbes (véase el recuadro III.1). Por un lado, la conveniencia de considerar de manera conjunta las emisiones GEI y las de compuestos tóxicos y, por otro, que la confección de los inventarios es una actividad relevante que se puede implementar paulatinamente, expandiendo la cobertura de fuentes emisoras y mejorando, con el tiempo, la capacidad técnica. Los inventarios de ciudad examinan dos temas adicionales que es necesario resolver: a) la definición de las fronteras del área que se ha de considerar; b) el alcance de las emisiones que se han de estimar, es decir, si se contabilizan solo las urbanas o también las que, aunque producidas en otros lugares, son resultado de la demanda urbana. El protocolo de emisiones GEI a nivel de comunidad es una iniciativa de C40, de ICLEI y del World Resource Institute, que propone un marco común para que las ciudades informen sobre sus emisiones y se ocupen del seguimiento. Resultado de un intenso proceso internacional, el protocolo aspira a producir información transparente, accesible y comparable sobre emisiones urbanas y proporciona una metodología básica común y asistencia técnica para los gobiernos locales que decidan participar.

RECUADRO III.1

ELEMENTOS QUE SE HAN DE TENER CUENTA PARA LA CONFECCIÓN DE INVENTARIOS DE EMISIONES

- Los inventarios deben estar completos, contener todas las fuentes antropogénicas con impacto en la ciudad objeto de estudio y contabilizar los diversos compuestos, incluidos los GEI, los gases tóxicos y los precursores.
- Tener claro el alcance geográfico y de fuentes que abarca el inventario.
- Emplear, en los inventarios de emisiones locales, metodologías documentadas y transparentes en el marco de los planes de gestión del aire.
- Fomentar el uso continuado de metodologías coherentes a fin de que las mediciones sean comparables y faciliten la evaluación de las medidas adoptadas.
- La información sobre las actividades, factores de emisión y fuentes consideradas debe ser transparente y accesible para permitir su replicabilidad y el seguimiento de las medidas.
- Fortalecer las instituciones encargadas de los inventarios tanto en lo que atañe a la normatividad como a los recursos humanos destinados a esta tarea.

9 El programa se inició en mayo de 2012, y en 2013 llevó a cabo una prueba piloto extensa. La guía para el informe sobre emisiones de ciudad está disponible en línea y ofrece un protocolo para informar sobre las fuentes, el alcance geográfico y las emisiones, así como principios generales para la confección de inventarios (http://www.ghgprotocol.org/city-accounting).
Recuadro III.1 (conclusión)

- Considerar el desarrollo de inventarios como un proceso que puede mejorarse continuamente. Las ciudades pequeñas pueden comenzar empleando metodologías desarrolladas para otras ciudades de características similares (tipo de fuentes y geografía), con el tiempo pueden ir expandiendo las fuentes y estaciones de monitoreo y perfeccionando las mediciones.

Fuente: Elaboración propia.

C. Transportes y uso del suelo: una dinámica indivisible

A nivel mundial, aproximadamente el 13% del total de las emisiones GEI proviene del uso de combustibles para el transporte (ONU-Hábitat, 2012). En América Latina se observa un aumento de las emisiones de CO₂ del sector transporte, principalmente en el Brasil y México, como puede verse en el gráfico III.3. En 2007, los vehículos privados representaban, en término medio, el 72% de las emisiones de CO₂ de la región, y los modos de transporte colectivo contribuían un 28% (ONU-Hábitat, 2012). Un elemento que contribuye al incremento de las emisiones es el aumento significativo de la demanda de automóviles e infraestructura vial, que se ha acentuado en la última década. La tasa media de motorización de la región era de 0.08 vehículos por persona en 1990, y en 2007 se situó en aproximadamente 0.17 vehículos por persona (CAF, 2011), mientras que en algunos países como México y el Brasil esa tasa es aún más elevada, ya que alcanza los 0.25 vehículos por persona (ONU-Hábitat, 2012). Los factores que explican el aumento del número de automóviles son diversos: crecimiento de la población urbana y de los ingresos per cápita; mayores facilidades de crédito; reducción del precio de venta de los vehículos; aumento del número de hogares de menor tamaño; mejoría de la infraestructura vial (aunque desigual y segregada a nivel de áreas urbanas); incremento de las distancias hogar-trabajo a medida que las ciudades se han ido volviendo más extensas y su crecimiento se ha concentrado en la periferia. El aumento del número de desplazamientos en las ciudades y la falta de un ejercicio coherente y sistémico de gestión a nivel urbano y sectorial ha provocado numerosas externalidades negativas: más congestión, viajes más lentos, accidentes de tránsito y aumento de las emisiones GEI en las metrópolis de América Latina.

GRÁFICO III.3

EMISIONES DE CO₂ DEL SECTOR DE LOS TRANSPORTES EN LOS PAÍSES SELECCIONADOS

(En toneladas métricas de CO₂)

Fuente: Elaborado sobre la base de datos del Banco Mundial, 2013.
La densidad urbana es uno de los factores que más influyen en la demanda de energía del transporte de pasajeros y sus emisiones GEI. Una menor densidad urbana se asocia con mayor demanda de energía para el transporte, debido a que el automóvil se utiliza más y que los desplazamientos son más largos. Además, la baja densidad se asocia también con mayor demanda energética para servicios como electricidad, drenaje y agua potable (Ewing y otros, 2007; CME, 2010. Las ciudades compactas, con menores distancias de desplazamiento de la población para la realización de sus actividades (trabajo, escuela, ocio) y con un sistema de transporte público eficientes, contribuyen a que la demanda para el transporte individual sea menor que en las ciudades extensas y con especialización zonal en el uso del suelo (ONU-Hábitat, 2012). Es decir, las políticas que afectan al desarrollo urbano son importantes para la mitigación: una ciudad más densa ofrecería servicios y bienes de una manera también más condensada y, en consecuencia, los desplazamientos serían más cortos. Además, si los recorridos son menores, las opciones no motorizadas se vuelven más viables (Johnson y otros, 2009; CAF, 2011).

Si bien la estructura de las ciudades responde a diversos procesos económicos y sociales, los gobiernos locales cuentan con una variedad de instrumentos para favorecer un desarrollo urbano sostenible, desde normas sobre zonificación y apertura de nuevo suelo hasta incentivos fiscales e instrumentos de recuperación de inversión pública en urbanización. Los efectos de estas medidas son paulatinos y acumulables, pero pueden ser rápidos en las áreas de crecimiento y contribuir a reducir las emisiones futuras, por ejemplo, disminuyendo la apertura de suelo en zonas discontinuas y lejanas de los bordes actuales de las ciudades y de las fuentes de empleo o si fomentan la redensificación.

En el contexto latinoamericano, este proceso ha de llevarse a cabo de manera coordinada con las políticas de provisión de vivienda y articulado con los promotores inmobiliarios, de forma tal que las regulaciones establecidas favorezcan el desarrollo de ciudades compactas pero no restrinjan el acceso al suelo y la vivienda de los estratos de menores ingresos. Los planes que favorecen mayores densidades de construcción condicionadas a la oferta de vivienda para hogares de distintos estratos sociales constituyen un buen ejemplo de sostenibilidad ambiental y social en algunas ciudades canadienses.

Además de las medidas orientadas a transformar el patrón de movilidad urbana, en el sector de los transportes hay un alto potencial para la mitigación. En América Latina, el transporte público aún sigue ofreciendo servicios ineficaces e insuficientes, lo que también contribuye al aumento del número de vehículos privados en circulación (Lupano y Sánchez, 2009). A ello se suma el hecho de que la mayoría de las ciudades no cuentan con una infraestructura amigable y segura para peatones y ciclistas, lo que dificulta el uso del transporte no motorizado. En contrapartida, las ciudades cuentan con infraestructura vial para automóviles y quienes usan este modo de transporte suelen tener poder adquisitivo y, también, están dispuestos a pagar para continuar utilizando sus vehículos, aun cuando los costos de utilización sean elevados (precio de los combustibles, peajes y estacionamientos), de modo tal que las vías de circulación se encuentran congestionadas (CAF, 2011).

Así, los beneficios para la reducción de emisiones son altos en el sector de los transportes y cabe esperar mayores dividendos si se tienen en cuenta los efectos inmediatos que estas acciones tendrían sobre la salud, la reducción del tiempo de viaje y los costos del traslado de mercancías y personas. Esencialmente, en el sector transporte se identifican cuatro tipos de medidas: 1) transformación de la clase de equipos y combustibles; 2) desincentivo del uso de automóviles particulares; 3) fortalecimiento del transporte público, y 4) fomento de medios no motorizados de transporte (véase el cuadro III.1). La relevancia de estas medidas de mitigación en cada ciudad dependerá de las características locales y también de la capacidad institucional y de financiamiento. Por ejemplo, si bien el impacto de la implementación de un tren eléctrico sobre las emisiones puede ser mayor que BRT, desde el punto de vista del financiamiento esta opción puede ser inviable para algunas ciudades.
CUADRO III.1
MEDIDAS DE MITIGACIÓN EN LOS TRANSPORTES

<table>
<thead>
<tr>
<th>Medidas de mitigación en transporte</th>
<th>Efectos esperados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte Privado</td>
<td></td>
</tr>
<tr>
<td>Desincentivar el uso de automóviles</td>
<td>Las restricciones de tránsito por día, hora y/o área, zonas libres de automóviles, restricciones para el estacionamiento y el tipo de vehículos, asignación de espacio de calle por tipo de transporte, restricciones en el número mínimo de ocupantes de vehículos privados.</td>
</tr>
<tr>
<td>Incentivos para modos de transporte no motorizados</td>
<td>Expansión de carriles para bicicletas, estacionamientos y conexiones intermodales, programas de bicicletas públicas compartidas, ajustes al reglamento de tránsito.</td>
</tr>
<tr>
<td>Regulación de emisiones y combustibles</td>
<td>Establecimiento de estándares para las emisiones de los vehículos que circulan, inspección regulador del desempeño de los automóviles, certificación local, programas públicos de compra y sustitución de vehículos chatarra.</td>
</tr>
<tr>
<td>Información y consumo</td>
<td>Fomento de la conducción eficiente, etiquetado del desempeño ambiental de los vehículos, incentivos fiscales para la sustitución de vehículos y/o combustibles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transporte Público</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustitución de vehículos</td>
<td>Financiación e incentivos para la reconversión de vehículos de motores y combustibles menos contaminantes, esquemas de cofinanciamiento público-privado para nuevos sistemas, monitoreo de las emisiones de autobuses.</td>
</tr>
<tr>
<td>Innovación en sistemas de transporte</td>
<td>Puesta en marcha de BRT y tranvías, implementación integral, aumentando la densidad poblacional y conectividad alrededor de las líneas dedicadas, rediseño y programación de rutas para mejorar la cobertura.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia sobre la base de Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), *Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication*, Nueva York, Naciones Unidas, 2011; y WEC (2010).

Hay varias medidas encaminadas a desincentivar el uso de automóviles particulares y que priorizan el transporte público y el no motorizado. Entre ellas cabe mencionar la implantación de peajes urbanos en algunas zonas de la ciudad, ya de manera permanente, ya en ciertos horarios, destinando los recursos recaudados a mejorar el transporte público. También se han propuesto medidas para aumentar el costo del estacionamiento en zonas céntricas, con el objeto de reducir el número de automóviles en zonas saturadas de la ciudad (por ejemplo, instalando parquímetros en la vía pública). Estos programas suelen ir acompañados de la creación de estacionamientos periféricos integrados al sistema de transporte público, que facilitan el traslado desde las zonas periféricas de las ciudades (Vasconcellos y otros, 2011). Otros programas han establecido un número mínimo de ocupantes para que los automóviles puedan ingresar en zonas de mucho tráfico, intentando así fomentar un uso más racional de los vehículos.

Además, ciudades como São Paulo y México, D.F. han regulado el tipo de vehículos que pueden circular por sus calles, el nivel de emisiones permitido y el tipo de combustibles que han de utilizar. Estas medidas requieren el monitoreo regular de la observancia de las normas y sanciones claras en caso de incumplimiento. Por ejemplo, el programa “Hoy No Circula” de México, D.F. requiere la certificación
de los vehículos que pretenden circular regularmente en el Distrito Federal y restringe el tráfico según las normas aplicables a las emisiones. Esta verificación debe realizarse cada dos años o cada seis meses, según la antigüedad del vehículo; los costos corren a cargo de los particulares (GDF, 2012).

Asimismo, diversas ciudades han reforzado las infraestructuras para el transporte no motorizado. Por un lado, se han ampliado las ciclovías y se ha proporcionado a los ciclistas condiciones seguras de desplazamiento (mejorando la señalización en áreas de usos múltiples y cruces) y se ha integrado esta opción a otros modos de transporte (por ejemplo, estacionamientos para bicicletas en estaciones de autobuses). Por otro lado, se ha aumentado las zonas peatonales en áreas de alta circulación de personas, restringiendo la circulación de automóviles (Vasconcellos y otros, 2011).

Es indispensable que estos programas vayan acompañados de medidas que aspiren a hacer del transporte público una opción viable, segura y eficiente para la mayoría de los residentes urbanos. Diversas ciudades de la región están trabajando en políticas que intentan ampliar la oferta de transporte público por medio de la creación o ampliación de sus líneas de metro o la implementación de sistemas de autobuses rápidos. São Paulo, Río de Janeiro, Brasilia, Santiago, México, D. F. son ejemplos de ciudades que están ampliando las líneas de metro para ofrecer a la población un servicio de transporte colectivo de mejor calidad. Por otra parte, han proliferado en diversas ciudades latinoamericanas los sistemas de autobuses de transporte rápido (BRT), inspirados en las experiencias de la Red Integrada de Transportes de Curitiba y del TransMilenio de Bogotá. La lógica común de estos sistemas son la mejora de la organización y la prestación del servicio mediante vías exclusivas para autobuses y estaciones únicas, cambios hacia tecnologías más limpias en los autobuses y los combustibles, así como su articulación con otros medios de transporte. Las evaluaciones del TransMilenio y otros sistemas similares, como el Metrobús y el Transmetro, demuestran que estos sistemas favorecen la sustitución del automóvil, la reducción de la congestión y la contaminación ambiental, y la reducción de los tiempos de desplazamiento, sobre todo para los hogares de menores ingresos, y así lo demuestra un estudio realizado en Bogotá (CAF, 2010). Si estos proyectos se implementan con la metodología MDL (Mecanismo de Desarrollo Limpio)10, es posible acceder a mecanismos de financiamiento y participar en los mercados de reducción de GEI basándose en las reducciones de emisiones acreditadas como resultado del proyecto. Si bien estos proyectos se iniciaron en las grandes metrópolis de América Latina, hoy también se implementan en ciudades medianas, donde tienen un gran potencial para mejorar el transporte y reducir las emisiones GEI, como lo demuestra el caso de Barranquilla (Colombia) (véase el recuadro III.2).

Más que pensar de manera aislada en cada una de estas medidas, algunas experiencias muestran que los mejores resultados son los que se obtienen mediante la articulación de varias iniciativas. Por ejemplo, la estrategia de sostenibilidad de la ciudad canadiense de Toronto se basa en el desarrollo de infraestructuras y la búsqueda de modalidades alternativas de transporte para potenciar el uso del transporte público, de las bicicletas y la caminata. Así, la ciudad ha implementado una estrategia de transición hacia un transporte verde mediante la sustitución de vehículos tradicionales por eléctricos e híbridos, así como el uso de nuevos combustibles y la expansión de las vías exclusivas para el transporte público. Además, la ciudad promueve el uso de transporte no motorizado mediante la creación de ciclovías y estacionamientos para bicicletas (Lupano y Sánchez, 2009). De manera similar, el Plan Verde de México, D.F., implementado desde 2007, pretendía abordar el problema de movilidad de la megaurbe desde una perspectiva que contribuyera a disminuir el tráfico, la contaminación local y las emisiones GEI. Los ejes del programa han sido las mejoras del transporte público y la ecomovilidad (formas no motorizadas). En el marco del plan se han ampliado las líneas de metro, se ha cambiado la configuración vial del sistema de Metrobús con la construcción de cinco corredores, se han sustituido autobuses por

10 El Mecanismo de Desarrollo Limpio (MDL) es un mecanismo de mercado establecido en el protocolo de Kyoto (art. 12) a través del cual proyectos localizados en los países en desarrollo (“Partes no incluidas en el Anexo I”) generan iniciativas que tengan como resultado reducciones certificadas de emisiones, que pueden ser adquiridas por los países desarrollados (Partes en el Anexo I) como parte de sus compromisos cuantificables de reducción de emisiones.
equipos más eficientes en cuanto a consumo de combustibles y se ha mantenido el mencionado programa “Hoy No Circula”. Además, se instalaron programas de bicicletas públicas compartidas y se expandieron corredores peatonales en áreas centrales. A la par se han implementado medidas que intentan reducir el uso de automóviles, como el programa “Transporte Escolar”, que obliga a las escuelas privadas a ofrecer servicio de transporte a sus estudiantes con miras a que los padres no usen sus vehículos particulares. La mejora de la calidad del aire y la reducción de las emisiones son buenos resultados, aunque el programa sigue desincentivando el uso del automóvil particular (GDF, 2012). Los casos canadiense y mexicano ilustran que, pese a las diferencias de los contextos económicos y políticos de ambas ciudades, es posible considerar una batería de acciones que respondan a las complejas necesidades de movilidad urbana con planes que combinen acciones a diversas escalas —del transporte en el barrio a los desplazamientos suburbanos— y en distintos campos —de las soluciones comunitarias a las inversiones público-privadas.

RECUADRO III.2

BARRANQUILLA, COLOMBIA: TRANSMETRO BRT (BUS RAPID TRANSIT)

El Transmetro es una iniciativa de Barranquilla, ciudad con 1,2 millones de habitantes, que aspira a crear un transporte público eficiente desde el punto de vista energético, seguro, rápido, conveniente, cómodo y eficaz, basado en un sistema rápido de tránsito (BRT). Los aspectos básicos de esta iniciativa son:

- Autobuses con mayor capacidad de carga y más eficientes, incluida la sustitución de autobuses públicos antiguos.
- Las nuevas infraestructuras construidas incluyen carriles para los autobuses, paradas de abordaje a nivel, pago antes de subir al transporte e información en tiempo real sobre las rutas disponibles.
- Integración de las rutas de transporte que alimentan las líneas del Transmetro.
- La gestión centralizada de la flota de los autobuses permite optimizar su ocupación y, en consecuencia, el consumo de combustible.
- Asociación público-privada en la que el gobierno es responsable de las infraestructuras y el sector privado de los autobuses y la prestación del servicio.

Hasta 2012, el proyecto generó una reducción de 33.243 tCO$_2$e en el sistema de transportes y se estima que la reducción puede alcanzar las 55.828 tCO$_2$e/año.

La articulación entre medidas de mitigación también potencia su impacto. Por ejemplo, las acciones que aumentan el costo del uso del transporte privado arrojan mejores resultados cuando se combinan con mejoras en la planificación urbana que facilitan la movilidad por vías alternativas (Dulal, Brodign y Onorioso, 2011). El papel de la movilidad sostenible en la planificación urbana es la preocupación central de modelos como el Transit Oriented Development, que promueve el desarrollo de corredores habitacionales y comerciales articulados a nodos de transporte, buscando con ello promover formas alternativas de movilidad (caminata y bicicleta) y reducir el número de kilómetros viajados, la contaminación del aire y las emisiones (Carlton, 2009). Los principios de esta idea de crecimiento urbano están presentes en ciudades tan diversas como San Francisco, Toronto, Vancouver, Guatemala y Curitiba, el antecedente propio de la región. Más que intentar importar un protocolo de una ciudad a otra, lo que estos ejemplos tienen en común son los desarrollos donde el espacio construido está fuertemente articulado con los sistemas de transporte y donde esa articulación permite renovar o preservar comunidades locales.
Dada la complejidad de las políticas urbanas de transporte, el uso de modelos de simulación puede ser una herramienta útil, ya que estos son capaces de incorporar a los diferentes aspectos locales (población, crecimiento económico, normatividad urbana, entre otros) y permiten a los encargados de tomar decisiones tener en cuenta algunas de las externalidades que influyen en el sistema de transporte y sus interrelaciones, proporcionándole una visión integral del problema. Las proyecciones presentadas por los modelos de simulación permiten visualizar y estimar la demanda asociada a diferentes escenarios de emisiones GEI y tomar en cuenta el impacto potencial que sobre estas pueden tener distintas medidas. Estas herramientas están ahora más presentes en ciudades de todo el mundo y, como lo demuestra el caso de Santiago, América Latina cuenta con las herramientas analíticas y los recursos humanos que permitan su utilización. En Santiago, un modelo de uso integrado de suelo, transporte y emisiones ha sido empleado tanto para definir las metas de mitigación específicas por sector como para evaluar las políticas implementadas (véase el recuadro III.3).

El sector de los transportes en América Latina se enfrenta al reto de alcanzar un sistema de movilidad urbana sostenible, basado en mejoras tecnológicas, el acceso a un sistema de transporte público de calidad, la disminución de los desplazamientos en automóviles particulares y mejoras de la infraestructura urbana para transportes no motorizados. Los beneficios potenciales son múltiples, puesto que las ganancias se traducirán no solo en reducciones de las emisiones GEI, sino también en una disminución de la congestión vial y en beneficios para la calidad del aire y la seguridad energética (IPCC, 2000; Dulal, Brodnig y Onoriose, 2011).

RECUADRO III.3
SANTIAGO: MODELO INTEGRADO DE USO DEL SUELO, TRANSPORTES Y EMISIONES

La Región Metropolitana de Santiago, con su creciente extensión, su tasa de motorización, sus demandas cada vez mayores de inversión pública en infraestructuras para la movilidad privada y el aumento del consumo de combustibles fósiles, está definiendo un modelo de desarrollo que en el futuro puede ser muy costoso de mantener económicamente y energéticamente y que eventualmente puede ser insostenible desde el punto de vista tanto ambiental como económico (Lupano y Sánchez, 2009). Con la intención de mejorar el sistema de transporte de sus ciudades, en los últimos años Chile ha perfeccionado las técnicas de generación de escenarios de desarrollo urbano, que hoy cuentan con un instrumento fiable para relacionar variables de uso de suelo, transporte y emisiones de gases (Pardo y Pedrosa, 2012).

En el estudio Risk Habitat Megacities se diseñó la ciudad de Santiago para el periodo 2010-2030 empleando el modelo MUSSA (modelo de equilibrio del mercado del uso del suelo urbano), el modelo de transporte ESTRAUS y el modelo de emisiones MODEM, que permitió analizar varios escenarios de desarrollo socioeconómico y de políticas (véase el diagrama). La interacción entre uso del suelo y transportes se verifica a través del cambio de las localizaciones de las actividades y de los habitantes (en el gráfico, flecha hacia abajo de MUSSA a ESTRAUS), que modifica la demanda de transporte de bienes y personas, y en los ajustes de los índices de accesibilidad (flecha hacia arriba de ESTRAUS a MUSSA), que afectan a la valoración del suelo y las decisiones de localización de los residentes y empresas. El modelo MODEM calcula las emisiones de las fuentes fijas que recibe de MUSSA y de las fuentes móviles que recibe de ESTRAUS.

Fuente: Elaboración propia.

*Estudio desarrollado conjuntamente por institutos de la Sociedad Helmholtz de Alemania, universidades chilenas (Universidad de Chile, Pontificia Universidad Católica de Chile, Universidad Católica de Valparaíso, Universidad Alberto Hurtado) y la CEPAL. Véase Heinrichs y otros (2012).
A partir de un conjunto de supuestos económicos, demográficos y de política pública, el modelo estima que, en el periodo mencionado, se producirá un aumento más drástico de la tasa de automóviles por hogar, que casi se duplicará (de 1.26 a 2.37) a consecuencia del aumento de los ingresos familiares, lo que generará un incremento del 88% del parque automotor. Además, el modelo también predice que se mantiene la concentración del empleo en el centro de Santiago y en el sector oriente, lo que ocasionará fuertes impactos en el sistema de transportes, más agudos en las horas punta de la mañana y la tarde. En la hora punta de la mañana (7.30 a 8.30), los desplazamientos totales aumentan un 50% (de 1.4 a 2.1 millones); de ese número, los desplazamientos en automóvil aumentan un 60% (de 0.52 a 0.83 millones). En consecuencia, el incremento de la congestión vial será importante, ya que, a pesar de tenerse en cuenta un aumento significativo de la capacidad vial estructural (autopistas y avenidas) del sistema de transporte público, las vías con un alto grado de saturación son numerosas y se concentran en la zona del centro y en el eje centro-oriente. En la ciudad, la velocidad media en automóvil en la hora punta de la mañana desciende un 20% (de 29.4 a 23.8 km/h), y solo un 10% en transporte público (de 23.6 a 21.7 km/h) y ambas tienden a parecerse más entre sí.

D. La demanda energética de las zonas urbanas y la reducción de las emisiones asociadas a dicha demanda

Las ciudades demandan el 80% de la energía que se produce a escala mundial y generan cerca del 67% de las emisiones GEI relacionadas con la energía, un porcentaje que, según las estimaciones, será del 73% en 2030 (AIE, 2008). Si bien una alta proporción del consumo energético actual es el que se registra en las ciudades desarrolladas, en las próximas décadas las ciudades de los países en desarrollo serán responsables en gran medida del crecimiento de la demanda energética (AIE, 2008). El aumento de la demanda energética de edificaciones residenciales y comerciales, así como de las infraestructuras y servicios urbanos, es un fenómeno que puede apreciarse en varios países del mundo. En América Latina, se registra a medida que aumentan los ingresos medios y cuando el sector de la construcción se dinamiza y cambia la demanda de los hogares, que consumen mayor espacio habitado y utilizan...
más aparatos electrónicos (PNUMA, 2011). En nuestra región, como en otros países en desarrollo, el desafío radica en que ese aumento va acompañado de deficiencias en el acceso a la energía, la provisión de servicios urbanos y la vivienda adecuada para una parte todavía importante de la población. Por tanto, para hacerle frente hay que transformar el consumo energético en ambos espectros: medidas que reduzcan la demanda energética de los sectores más dinámicos mientras se mejora de manera sostenible la provisión energética de los menos favorecidos.

Una revisión de las medidas implementadas en distintas latitudes permite identificar cuatro ejes de acción: medidas orientadas a aumentar la eficiencia energética; medidas encaminadas a cambiar hábitos de consumo; medidas encaminadas a transformar las fuentes de energía empleadas, y las que aspiran a modificar la demanda energética de las infraestructuras y los servicios de la ciudad. Como en el caso de los transportes, en los planes de acción climática las medidas suelen estar interrelacionadas para potenciar su impacto (véase el recuadro III.4).

<table>
<thead>
<tr>
<th>RECUADRO III.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDUCIR LA DEMANDA ENERGÉTICA</td>
</tr>
<tr>
<td>Líneas de acción</td>
</tr>
<tr>
<td>Eficiencia energética</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modificación de los patrones de consumo</td>
</tr>
<tr>
<td>Transformación de las fuentes de energía</td>
</tr>
<tr>
<td>Infraestructura y servicios urbanos verdes</td>
</tr>
</tbody>
</table>

Dado que las edificaciones residenciales y comerciales demandan una tercera parte de la energía que se consume a escala mundial, el sector de la construcción tiene un alto potencial para contribuir a los esfuerzos de mitigación de GEI. En particular, el crecimiento demográfico y urbano que sin duda se producirá en las siguientes décadas puede orientarse a un consumo energético más eficiente con bajos costos, aprovechando la tecnología y las prácticas existentes (IPCC, 2007). Los países de América Latina pueden aprovechar la oportunidad que les brinda la creciente demanda de vivienda y espacio comercial para sentar las bases de un sector de la construcción que en las próximas décadas contribuya de manera decisiva a la reducción de emisiones (PNUMA, 2011; WBCSD, 2008). Además de aprovechar el diseño y la tecnología verde, las nuevas edificaciones han de integrarse en un esquema de planificación urbana.
orientado hacia la reducción global de la demanda energética. Las ciudades más compactas no solo se vinculan a ahorros energéticos en los transportes, sino también a una demanda energética más baja de las edificaciones de menor tamaño y a ahorros en la provisión de servicios urbanos. En América Latina, promover el uso racional del espacio será aún más importante en las futuras décadas dada la tendencia a la expansión territorial observada en las ciudades. Más aún, la reducción del número medio de ocupantes por vivienda y el aumento del número de hogares unipersonales pueden contribuir a incrementar la demanda energética puesto que reducen las economías de escala en el consumo energético de los hogares mientras aumenta la demanda de espacio habitable (Sánchez, 2012). Es decir, el cambio poblacional traerá nuevos retos para la mitigación, aun cuando las ciudades logren reducir sus tasas de crecimiento demográfico.

Existe un amplio abanico de opciones para mejorar la eficiencia energética de las edificaciones, tanto de las nuevas como de las ya existentes, así como para disminuir el consumo total. Diversos estudios coinciden en señalar que hoy en día disponemos de tecnología y opciones de diseño ecoeficientes, pero que su adopción no se ha expandido debido a restricciones financieras, a la segmentación y fragmentación del mercado de la construcción, las limitaciones de la capacidad regulatoria de las autoridades, unas prácticas de consumo muy arraigadas y falta de información sobre las opciones existentes. Para establecer medidas viables a nivel local es necesario considerar opciones a esas limitaciones (WEC, 2010). Una herramienta común y eficaz son los códigos de construcción locales, que fijan estándares de eficiencia energética en el tipo de materiales, diseño y equipamiento de las edificaciones residenciales y comerciales. Para mejorar su impacto, la regulación debe tener en cuenta las condiciones climáticas locales y el tipo de edificación y de ocupación a fin de identificar oportunidades diferenciadas de ahorro energético (Gupta y Chandiwala, 2012). Por ejemplo, los materiales, el diseño y las tecnologías para el ahorro energético varían según se trata de un clima cálido y húmedo o de uno templado y seco, y también según el uso de los edificios (horarios, prácticas de ocupación). De ahí que la definición de códigos de construcción locales requiera tener en cuenta esas variantes además de las restricciones institucionales y/o financieras que puedan comprometer seriamente su viabilidad. En el recuadro III.5 se muestran brevemente los ejes comunes de regulación en materia de ahorro energético para edificaciones residenciales y comerciales.

<table>
<thead>
<tr>
<th>RECUADRO III.5</th>
<th>ÁREAS DE REGULACIÓN ENERGÉTICA EN EDIFICACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector residencial</td>
<td>Sector comercial y público</td>
</tr>
<tr>
<td>Aislamiento térmico</td>
<td>Aislamiento térmico</td>
</tr>
<tr>
<td>Sistemas de calefacción y refrigeración</td>
<td>Sistemas de calefacción y refrigeración</td>
</tr>
<tr>
<td>Mecanismos de ventilación</td>
<td>Mecanismos de ventilación</td>
</tr>
<tr>
<td>Sistemas de provisión de agua caliente</td>
<td>Estándares de eficiencia energética de los equipamientos de oficinas y centros y servidores de datos</td>
</tr>
<tr>
<td>Estándares de eficiencia energética de los electrodomésticos instalados</td>
<td>Iluminación externa y externa</td>
</tr>
<tr>
<td>Tipo de Iluminación interna</td>
<td>Regulación de los usos (sobre todo en edificios públicos) Instalación de sensores de movimiento u horario Instalación de fotosensores para utilización de luz natural</td>
</tr>
</tbody>
</table>

El monitoreo de la aplicación de los códigos de construcción es fundamental para obtener buenos resultados, pero tiene costos importantes y requiere recursos humanos capacitados; de ahí que sea más viable cuando se selecciona un segmento del mercado que se ha de supervisar y se desarrollan las capacidades técnicas e institucionales de los responsables (Liu y otros, 2010). Las experiencias demuestran
que los códigos pueden ser particularmente útiles en las nuevas edificaciones, donde el monitoreo es más sencillo y los costos de implementación se reducen (CPI), aunque también pueden implementarse en la renovación de edificios. Los gobiernos locales pueden contribuir a derribar una de las barreras que impiden su implementación fomentando entre los constructores el intercambio de conocimientos sobre tecnologías y diseño verdes, creando incentivos fiscales para la adopción de esas tecnologías entre los hogares de clase media y alta, y facilitando que los costos los compartan los diversos actores (Estado, constructores, compradores). Así, por ejemplo, Alemania tiene una de las metas de reducción de demanda energética más ambiciosas para las edificaciones urbanas. Las medidas adoptadas incluyen restricciones en la tecnología y los materiales empleados en edificaciones nuevas y renovadas, pero también créditos estatales preferentes que disminuyen los costos iniciales de los inversores y una legislación que estipula que los arrendatarios también han de contribuir a costear la inversión cuando se trata de viviendas de alquiler, lo que favorece la adopción de las medidas y reparte los costos en el tiempo (CPI, 2013b). Esta es una alternativa viable para otras regiones del mundo. Si bien la implementación de construcciones verdes puede ser inicialmente más costosa, hay estudios que demuestran que la tecnología y el diseño existentes permiten desarrollar edificaciones capaces de competir en costos de construcción con edificios no verdes y, aun cuando los costos iniciales sean más altos, la diferencia puede recuperarse con el ahorro energético obtenido y si se tienen en cuenta los beneficios en salud, la productividad y el bienestar de sus ocupantes (WEC, 2010).

Además de los códigos de construcción, existen mecanismos de mercado orientados hacia la reducción del consumo energético; por ejemplo, certificados de eficiencia energética para negocios, créditos preferentes para edificaciones verdes y contratos con compañías privadas con vistas a mejorar el desempeño energético. Esta última opción, conocida como EMSE, se ha popularizado en los últimos años e implica la contratación de compañías de servicios energéticos para garantizar el ahorro mediante la implementación de medidas apropiadas, la inversión en los cambios tecnológicos, la gestión de los proyectos y la capacitación de los interesados. En muchos proyectos, se paga a las empresas con el ahorro energético obtenido, lo que contribuye a su viabilidad financieramente. Presentes hoy en todo el mundo, estos planes se han aplicado sobre todo en el sector público, particularmente en alumbrado público y edificios gubernamentales, aunque también han comenzado a expandirse con más fuerza al sector comercial y residencial (Bertoldi y otros, 2006; Vine, 2005).

Las edificaciones formales, que cumplen con las normas de construcción de los países, y las de los sectores más dinámicos son las que tienen una demanda energética más alta, pero también existe un margen para mejoras energéticas en los asentamientos irregulares y precarios, donde reside gran parte de los habitantes urbanos de América Latina. Un primer ámbito de intervención es la mejora del acceso a la energía. Estimaciones recientes sugieren que en América Latina hay cerca de cuatro millones de hogares urbanos que carecen de electricidad y 24 millones que utilizan biomasa como combustible para cocinar, un hábito con importantes impactos negativos en la salud (AIE/PNUD/ONUDI, 2010). Los cambios de las fuentes de energía no solo reducirán las emisiones GEI, sino que también constituyen un mecanismo para combatir la pobreza. En este ámbito destacan los proyectos de sustitución de carbón y leña, estufas de mejor combustión y las iniciativas desarrolladas para dotar de energía a áreas periurbanas o asentamientos de difícil acceso mediante la instalación de paneles solares o turbinas de viento. Estos proyectos ya se han implementado en distintas ciudades de África y Asia, así como en zonas rurales de América Latina, y existe un proyecto de energía eólica desarrollado en Mendoza (Argentina) (Wisions 2012). En la implementación de estos programas, la participación de organizaciones no gubernamentales locales y la autogestión han sido claves para poner en marcha los proyectos de energía renovable (por ejemplo, ICLEI, 2012). Otro ámbito de acción son las mejoras de las viviendas y su equipamiento. Por un lado, varios proyectos piloto han experimentado con diseños econoeficientes que reducen los costos de la electricidad a la par que minimizan la exposición a algunos de los efectos que cabe esperar del cambio climático. Junto con programas locales, las autoridades urbanas pueden desarrollar programas cofinanciados para la mejora paulatina de los materiales y el equipamiento.
de las viviendas. En Montenegro (Albania), se está llevando a cabo un programa innovador, en el que se establecieron medidas para la concesión de un préstamo inicial a hogares pobres para mejorar las condiciones y la eficiencia energética de viviendas en asentamientos irregulares. Los ahorros en gasto energético que se obtienen gracias a esas mejoras se emplean para pagar el préstamo inicial y los costos de la regularización de la propiedad. La prueba piloto sugiere que los ahorros son tan importantes que el préstamo para el readecornamiento inicial se puede devolver en 6,4 años en término medio (PNUD, 2013).

Además de mejorar la eficiencia energética de las edificaciones, diversas políticas aspiran a transformar los hábitos de consumo de sus habitantes. Se trata de una estrategia necesaria para crear consenso respecto de las metas de eficiencia energética y sostenerlas en el tiempo; por ejemplo, si bien en los Estados Unidos se ha mejorado la eficiencia energética de manera importante en las últimas décadas, las ganancias se han perdido por el crecimiento de la demanda de metros cuadrados habitables (CPI, 2013a). Incidir en los hábitos de consumo incluye: a) programas de etiquetado de edificaciones y electrodomésticos para que los usuarios reconozcan las diferencias en el desempeño energético de los productos; b) subsidios para la adopción de iluminación y/o calefatores de bajo consumo; c) esquemas de modificación del comportamiento energético (horarios de uso en los edificios residenciales, tarifas eléctricas diferenciadas en horas pico), y d) programas educativos sobre los costos ambientales, sociales y económicos del consumo energético y las ganancias que se han de obtener con el consumo sostenible.

Además de estas medidas, cabe mencionar los programas encaminados directamente a reducir el consumo energético en la provision de servicios e infraestructuras urbanas. En distintas ciudades, el alumbrado público se ha identificado como un área con amplio potencial en ese sentido. Por ejemplo, en Barranquilla, un análisis identificó que las lámparas del alumbrado público emiten anualmente 9,289 gigatoneladas de CO₂, una cantidad que podría reducirse a la mitad si se sustituyeren por halurógenos cerámicos compactos metálicos, ya que se estima que la ciudad podría recuperar la inversión en ocho años (Celédén, 2011). Esta alternativa tecnológica no descarta opciones implementadas en otras ciudades, como paneles solares. Otros programas relevantes en este ámbito son los destinados a reducir la energía empleada en el bombeo de agua, tarea onerosa para las finanzas municipales y que consume mucha energía. Evaluando las condiciones actuales y las oportunidades para la mitigación puede hacerse con metodologías ya existentes, por ejemplo el Banco Interamericano de Desarrollo elaboró un protocolo para evaluar la eficiencia de los sistemas de bombeo en el Caribe e identificar su potencial de mitigación, incluidas la maquinaria instalada, la reducción de fugas y el mantenimiento (BID, 2011). Cabe señalar también los programas para reducir el consumo en los edificios públicos; por un lado, equivalen a beneficios para las finanzas locales y, por otro, son un ejemplo de consumo energético para los residentes urbanos, aun cuando su impacto en las emisiones totales de la ciudad pueden ser pequeños. La ciudad de Buenos Aires gasta alrededor de 30 millones de dólares al año en la electricidad de sus edificios públicos y los usuarios, dado que no los pagan directamente, no necesariamente están al tanto de esos costos. En 2008, la Agencia de Protección Ambiental de la ciudad creó el Programa de eficiencia energética en edificios públicos a fin de mejorar el consumo energético y contribuir a la reducción de emisiones GEI. El programa incluye un estudio de las condiciones de los edificios, el equipamiento, los patrones de uso y el confort térmico. A partir de ese estudio se formulan recomendaciones para mejorar la eficiencia energética por medio de un programa que contemplan reducciones del consumo energético de un 27% en iluminación; 54% en computadoras y 37% en calefacción y refrigeración (ICLEI, 2011).

El desarrollo de infraestructuras como los techos verdes y blancos y la expansión de zonas verdes y bosques urbanos también contribuyen a reducir el consumo energético en la medida en que hacen que la temperatura local baje; así se reduce también el uso de aparatos de aire acondicionado. Por su parte, la vegetación incrementa, aunque limitadamente, la capacidad de captura de CO₂ (Pataki y otros, 2011). Para aumentar el impacto neto de las infraestructuras verdes en la mitigación de GEI, los gobiernos locales deben prestar atención a las características del clima local, seleccionar el tipo de especies sembradas y ocuparse de su cuidado (McCarthy y Pataki, 2010). Además de los efectos en la
regularización del clima local, las infraestructuras verdes mejoran el ambiente urbano y contribuyen al bienestar psicológico de los residentes urbanos, lo que se traduce en efectos sobre la salud (Pataki y otros, 2011). Otro ámbito clave es el monitoreo de los impactos del crecimiento urbano en la cobertura forestal circundante, por ejemplo, a través de imágenes satelitales de alta resolución y ejercicios de mapeo participativo con habitantes de las áreas periurbanas.

A pesar de que tradicionalmente los gobiernos locales no habían participado en la gestión y la previsión de la energía, esta situación está cambiando con la introducción de energías renovables, sobre todo solar y eólica, cuya generación y gestión son descentralizadas. En diversas ciudades, las autoridades municipales empiezan a comprometerse a satisfacer localmente una parte de esa demanda. En la India, el Programa de ciudades solares del Ministerio de Energías Nuevas y Renovables puso en marcha en 2007 una serie de medidas para que las ciudades medianas produzcan el 10% de su energía. El programa implica el estudio de la demanda energética y el plan de cambio; el establecimiento de un comité a nivel ciudad y el fomento de la participación pública en el proyecto; el desarrollo de proyectos piloto y la gestión local de los programas (ICLEI, 2012).

La variedad y extensión de las medidas de sostenibilidad energética muestran el papel activo de los gobiernos locales en la mitigación y la manera en que esta tarea se alinea con otras metas de desarrollo prioritarias en nuestra región. Las acciones combinan iniciativas voluntarias y nuevas regulaciones ambientales con la participación de un amplio grupo de actores. Para ello, los gobiernos locales necesitan aprovechar las diversas fuentes de financiamiento internacional y nacional, público y privado, e incorporar el punto de vista de la mitigación mediante sus diversas políticas de servicios urbanos. La gestión de los residuos sólidos es un claro ejemplo de ello, donde un servicio tradicionalmente proporcionado por las municipalidades se ha convertido en diversas ciudades en un instrumento para la reducción de emisiones GEI y otros gases tóxicos. En la ciudad de São Paulo (Brasil), la transformación de la recolección, el tratamiento y el aprovechamiento del metano generado por los residuos sólidos ha tenido impactos positivos en la salud pública a la vez que ha contribuido sustancialmente al objetivo de reducir un 30% las emisiones (véase el recuadro III.6).

RECUADRO III.6

LAS POLÍTICAS URBANAS TRADICIONALES Y EL CAMBIO CLIMÁTICO

EL CASO DE LOS RESIDUOS SÓLIDOS EN EL BRASIL

Se estima que en el Brasil un 13% de la población (24,9 millones de habitantes) no cuenta con servicios de gestión de residuos sólidos urbanos, que un 27% (52 millones de habitantes) solo cuenta con servicios precarios, mientras que el 60% restante (113 millones de personas) tiene acceso a servicios de buena calidad (PLANSAB, 2011). A partir de la Constitución brasileña de 1988, la gestión de residuos sólidos es responsabilidad de los municipios, una tarea que, dados los limitados recursos de los gobiernos locales, constituye un gran desafío, ya que en algunos casos la gestión de residuos sólidos puede llegar a representar hasta el 20% de los gastos de la municipalidad (PLANSAB, 2011).

Si bien la gestión de los residuos sólidos ha constituido una tarea tradicional de los gobiernos locales, en años recientes el reto ha sido transformar esa gestión a fin de que la eliminación de los residuos se oriente según principios medioambientales y contribuya a reducir las emisiones GEI y otros compuestos tóxicos para la salud. En el Brasil se promulgaron nuevas leyes federales, como la Ley 11.445, de 5 de enero de 2007, que establece las directrices de saneamiento básico en el país, y la Ley 12.305, de 2 de agosto de 2010, por la que se creó la Política Nacional de Residuos y se formularon normas para reordenar las acciones del gobierno en los ámbitos de saneamiento, residuos sólidos y emisiones GEI, y la participación de la iniciativa privada en la implementación de medidas gubernamentales (fortalecimiento de las asociaciones público-privada). Una de las principales metas de esta nueva legislación es facilitar
Recuadro III.6 (conclusión)

a más 25 millones de habitantes el acceso a servicios de saneamiento de calidad, y el gobierno se comprometió a desarrollar, de 2012 a 2014, iniciativas que permitan que la eliminación de los residuos sólidos sea adecuada desde el punto de vista medioambiental y sometida a algún tipo de procesamiento antes de que se los considere desechos. La implementación de esta legislación federal ha incluido el desarrollo de iniciativas —a nivel de municipios, microrregiones, regiones metropolitanas y estados— relacionadas con la gestión de los residuos sólidos, que constituyen una condición del gobierno federal para el traspaso de recursos a los municipios.

El nuevo marco institucional ha permitido obtener resultados importantes. Por ejemplo, se ha observado un avance significativo en la regularización de los basurales de las ciudades brasileñas, ya que, si en 1989 el 88,2% de los vertederos eran ilegales, en 2008 los vertederos ilegales solo representan el 50,8% (IBGE, 2008). Además, los lugares clasificados como rellenos sanitarios pasaron del 1,1% al 27,7% (IBGE, 2008). Por otra parte, algunas municipalidades han elaborado medidas encaminadas a potenciar la contribución de la gestión de los residuos sólidos a la mitigación del cambio climático. Un ejemplo en este campo es el municipio de São Paulo. Con la aprobación de la Ley 14.933, de 5 de junio de 2009, el municipio de São Paulo asumió voluntariamente la responsabilidad de reducir un 30% sus emisiones para 2012. Esta iniciativa propuso que se minimizara la cantidad de residuos generados, la reutilización y el reciclaje de materiales, la reducción de la nocividad y el tratamiento y depósito ambientalmente adecuados de los residuos sobrantes (principio XIV) y aborda puntos como el tratamiento y la eliminación de residuos preservando las condiciones sanitarias y promoviendo la reducción de las emisiones GEI (sección III, artículo 8°) (Prefeitura de São Paulo, 2009).

A fin de dar seguimiento a esta última directriz, se pusieron en marcha dos proyectos de mecanismo limpio (MDL) con potencia instalada de 20 MW cada uno (Los proyectos de MDL de residuos sólidos captan biogás del vertedero para conducirlo hasta centrales de beneficiarias, donde es enfriado y despojado de parte de sus impurezas. A continuación, el gas se dirige hacia grupos de generadores alimentados exclusivamente con biogás de vertedero, y así se produce energía eléctrica. El excedente de gas se lleva a quemadores de alta eficiencia, lo que garantiza la eliminación de todo el gas capturado. Esta instalación tiene una eficiencia de captación del 75%, es decir, un 25% de pérdida de biogás.). Además de la energía eléctrica generada, de los puestos de trabajo que se crearon y de los impuestos pagados, el 50% de los créditos de carbono son del municipio. En septiembre de 2007, el gobierno local subastó, en la Bolsa de Mercaderías y Futuros, 808.450 toneladas de CO₂, equivalentes a un precio de 16,20 euros por tonelada de CO₂. Estos recursos se utilizaron para mejorar las infraestructuras y se destinaron también a programas sociales para los vecinos del vertedero de la ciudad.

Es importante destacar que, puesto que el municipio de São Paulo vende los créditos de carbono provenientes de los proyectos MDL, no contabiliza en su inventario las reducciones de emisiones GEI, pues al vender los créditos de carbono produce otras emisiones y la entidad compradora gana el derecho de contabilizar en sus emisiones los créditos comprados, disminuyendo así sus emisiones.

Municipios como São Paulo presentan propuestas para incluir en su agenda tradicional los compromisos de mitigación del cambio climático. Cabe señalar que algunos servicios urbanos, como es el caso de los residuos sólidos, se prestaban de manera incompleta, ya que el ofrecido por el municipio consistía en retirar los residuos de las calles y casas y dejarlos en un relleno sanitario (legal o no). Actualmente, la responsabilidad del municipio es otra, e incluye desde campañas de educación ambiental en las que se estimula a la población a reducir el consumo de bienes, disminuyendo la cantidad de residuos sólidos producidos, hasta proyectos sobre el reaprovechamiento de los residuos para producir energías alternativas. Hoy existe una conciencia de la transversalidad del problema de los residuos, íntimamente relacionado con la degradación del medio ambiente y la salud pública.

Fuente: Elaboración propia.
E. Hacia una nueva institucionalidad para la mitigación eficaz de emisiones GEI en el ámbito urbano

El crecimiento de las áreas urbanas y la complejidad y complementariedad de sus funciones exigen más coordinación y sinergia entre los actores internacionales (organismos de las Naciones Unidas, BID, Banco Mundial, entre otros) y los diferentes niveles de gobiernos (nacional y subnacional) para diseñar e implementar políticas, programas, planes y proyectos de mitigación a nivel urbano. Dadas la magnitud y la extensión geográfica y espacial de las emisiones, muchas de las iniciativas encaminadas a mitigar los efectos del cambio climático en las ciudades no se limitan al ámbito político-administrativo de los municipios, ya que el flujo constante de personas, servicios y bienes de consumo entre municipios difumina los límites administrativos. De ahí que la gestión integral sea un objetivo estratégico para permitir una adecuada articulación en las urbes, caracterizadas por la creciente y compleja interrelación de sus relaciones económicas, sociales y medioambientales, incluida la problemática del cambio climático global.

La gestión urbana y territorial puede facilitar la adopción de un conjunto de políticas y acciones articuladas, tanto a nivel nacional como subnacional, combinando de forma más favorable las iniciativas tradicionales de carácter sectorial con las de mitigación y adaptación al cambio climático, que tienen un carácter más bien transversal y requieren la participación de los diferentes sectores de la gestión urbana. Es por ese motivo que resulta imprescindible una nueva arquitectura institucional urbana que establezca sólidos vínculos operativos entre los gobiernos nacionales y subnacionales, mediante estrategias que enlacen estructuras administrativas, normativas e instrumentos de gestión teniendo en cuenta las variables que influyen en el desarrollo de propuestas de mitigación de emisiones GEI. Es en ese sentido que, en este punto, resulta necesario contar con una nueva institucionalidad que permita combinar eficazmente la acción y la gestión en los diferentes niveles. América Latina ofrece muchos ejemplos, entre los que destacan la Subsecretaría de Desarrollo Regional del Ministerio del Interior del Gobierno de Chile y el Ministerio de las Ciudades del Brasil. En ambos casos se desarrolló, con una aproximación ministerial de alcance nacional, una serie de programas (nivel 2 y 3) que permiten definir papeles diferentes y complementarios a la vez. Las políticas de nivel nacional se transforman en medidas (tecnológicas, normativas, fiscales y económicas) que, en atención a diversos sectores (que trabajan para mitigar las emisiones GEI), son de ejecución directa por parte de los tres niveles de manera simultánea y articulada.

En este sentido, los planes de mitigación y adaptación constituyen una oportunidad para articular procesos de gestión urbana integrales y sistémicos para la reducción de emisiones y el desarrollo de economías urbanas bajas en carbono. A tal fin es necesario contar con una mayor participación ciudadana, un marco institucional adecuado y el diseño de políticas y acciones sistémicas, complejas y con objetivos múltiples.

La participación activa de la sociedad civil, como parte de la gestión urbana y territorial, desempeña un papel de gran importancia en la implementación de las acciones encaminadas a mitigar las emisiones de gases, ya que la actuación organizada de los individuos, grupos y asociaciones es capaz de redefinir los papeles en la relación entre sociedad civil, gobiernos nacionales y subnacionales, y mercado. Apoyar el diálogo y la coordinación entre los gobiernos nacionales y subnacionales y la sociedad civil para la ejecución de acciones de mitigación contribuye positivamente a alcanzar las metas que se han fijado las ciudades. La participación ciudadana desempeña un papel clave en el desarrollo de propuestas que integren los temas tradicionales a nivel local con el cambio climático. La coordinación de las medidas y, fundamentalmente, de las inversiones que estas suponen, necesita un marco fiscal más descentralizado y que sirva como “plataforma” para la ejecución de proyectos, sobre todo de infraestructuras y equipamiento productivo y social, en que el acceso a los bienes públicos sea la condición de un crecimiento con equidad. En los nuevos sectores emergentes de varios países de América Latina, con nuevas demandas y mayor poder adquisitivo, se concentrarán los principales problemas y procesos asociados a la mitigación. En este escenario, un mayor acceso a bienes y servicios puede llevar a un aumento considerable de las emisiones.
de GEI. La política pública deberá “desacoplar” el crecimiento del consumo de la huella ecológica y el aumento de emisiones actualmente asociado a ello. En el recuadro III.7 se presenta una experiencia de participación ciudadana y de mitigación del cambio climático, realizada en el municipio de Tocopilla, al norte de Chile, donde a partir de la demanda de una mejor calidad de vida y sostenibilidad ambiental por parte de la sociedad civil el municipio fue capaz de estimular la elaboración participativa entre la comunidad y el Ministerio del Medio Ambiente en un plan de descontaminación atmosférica. Esta iniciativa demuestra la importancia y la fuerza del movimiento ciudadano que trabaja para conseguir mejoras en la gobernanza ambiental del municipio.

RECUADRO III.7

CHILE: EL PAPEL DE LOS ACTORES SOCIALES EN UNA INICIATIVA DE MITIGACIÓN DEL CAMBIO CLIMÁTICO EN TOCOPILLA, REGIÓN DE ANTOFAGASTA

En el norte de Chile, a partir de la respuesta de los actores sociales a los inconvenientes provocados por una actividad industrial inadecuada, se implementa una medida de descontaminación atmosférica que es a la vez una propuesta de mitigación del cambio climático. La comuna de Tocopilla lleva más de cinco décadas abasteciendo a la industria minera del cobre a través de generación de energía por medio de centrales termoeléctricas en el área urbana de la ciudad, que utilizan coque de petróleo -un derivado del petróleo con alto poder de contaminación- como combustible para el funcionamiento de las turbinas. Además de esta actividad industrial, hay lugares para acopiar minerales metálicos y no metálicos dentro de la ciudad sin las medidas de resguardo necesarias para este tipo de almacenamiento.

Estos 53 años de actividad han significado riqueza para el país y la región, pero también el deterioro del territorio y de la calidad de vida de sus habitantes. En la actualidad se ha formado una zona saturada por material particulado MP10 y otros GEI. Fue esta saturación la que provocó que el capital social de la comuna de Tocopilla se dinamizara y tuvieran lugar una serie de encuentros sociales entre los distintos grupos de ciudadanos organizados formalmente, como juntas de vecinos, agrupaciones ambientales, grupos juveniles, partidos políticos y agrupaciones de pescadores, así como ciudadanos no organizados pero que querían expresar su opinión y preocupación por su territorio y su calidad de vida. Ese fue el inicio de un movimiento cívico transversal al que más tarde se sumaron las autoridades locales, como alcalde y concejales.

La primera labor de este movimiento ciudadano consistió en lanzar una campaña de sensibilización, primero dentro de su propia comuna y luego en toda la región. La tarea fue ardua y compleja, sobre todo si se tiene en cuenta que se estaba poniendo en tela de juicio la industria abastecedora de energía de la principal actividad económica de la comuna (minería de cobre), de la región y, muy importante, para el país.

Tras largas gestiones del movimiento ante los políticos encargados de la toma de decisiones y planificadores, gracias a la cooperación a nivel local y la participación de instituciones nacionales de defensa del medio ambiente fue posible obtener una respuesta del gobierno de entonces; así nació el Plan de descontaminación atmosférica para la ciudad de Tocopilla y su zona circundante, publicado en junio de 2010 como Decreto N° 70 del Ministerio Secretaría General de la Presidencia del Gobierno de Chile. El decreto, fruto de la capacidad de acción de la comunidad y la construcción de vínculos de las autoridades locales, es el inicio de una serie de acciones regionales que empiezan a establecer y determinar las responsabilidades de cada uno de los actores involucrados, con el propósito de dar una respuesta sistémica del problema de la contaminación. La respuesta urbana propone, además de la implementación de medidas para cumplir con las normas de emisiones, ya de MP10, SO2, NOx, CO u otros, la elaboración de un plan integral que contemple el daño provocado por los efectos acumulativos sobre el territorio y la forma en que la contaminación atmosférica ha afectado a las personas.
Recuadro III.7 (conclusión)

Lo interesante de este movimiento ciudadano y su propuesta urbana fue la capacidad de persuasión e integración de los actores. Por una parte, se determina el papel que en este proceso debe desempeñar cada uno de los agentes; por el otro, se transforma el enfoque de política pública, donde la atención se centra en la seguridad humana y sus diversas dimensiones (económica, salud, comunitaria y política), a la vez que se busca un enfoque integral que incorpora también elementos de la urbanización y el uso del suelo. Este movimiento social inicia en la región el proceso de concientización de las empresas respecto de los efectos que la actividad industrial ha provocado en el territorio y la asunción de responsabilidad por parte de las termoeléctricas, que han de ser las encargadas de buscar alternativas tecnológicas para mitigar las emisiones GEI y capturar los elementos particulados.

Un elemento a destacar de esta iniciativa es que muestra el papel central que las organizaciones civiles pueden desempeñar en la construcción de la gobernanza ambiental. La amplia coalición de actores permitió que se produjeran cambios fundamentales que apuntan a la construcción de una sociedad sostenible y que permita a los grupos locales desempeñar un papel protagónico en la gestión del desarrollo. El capital social movilizado también pudo canalizarse para otras acciones, como la planificación del crecimiento urbano de la comuna, la atención a la salud y nuevas oportunidades de actividad económica que antes la contaminación impedia. Además, las entrevistas con habitantes del lugar muestran que se ha producido una transformación en la percepción pública de la necesidad de diversificar la matriz productiva de la comuna y llevar a cabo prospecciones del uso de energías renovables no convencionales por parte de las empresas. Si bien se trata de un proceso a largo plazo, hoy es posible observar que al menos se están modernizando las tecnologías para reducir el efecto de los GEI y las emisiones de material particulado.

A modo de conclusión cabe señalar que el hecho de establecer un sistema de vigilancia social y una estrategia de participación de todos los actores públicos y privados puede favorecer el desarrollo de una actividad productiva respetuosa con el entorno y así recuperar la calidad de vida de los habitantes de Tocopilla.

Fuente: Elaboración propia.
La necesidad de innovaciones en la institucionalidad pública ha comenzado a ganar terreno en las iniciativas nacionales. Según el Programa especial de cambio climático (México 2009-2012), se hace necesario revisar el actual marco jurídico y adecuarlo a los imperativos de la mitigación y la adaptación, apoyar el desarrollo de capacidades en las entidades federativas y, finalmente, aplicar los mecanismos de supervisión, informe y evaluación de los avances del programa. Para hacer frente al proceso de cambio climático se requiere la acción concertada de todos los sectores de la sociedad y, en particular, del sector público en todos los órdenes de gobierno, que debe ejercer liderazgo en materia de organización y eficacia de las acciones encaminadas a la elaboración y aplicación de políticas públicas adecuadas que se traduzcan en un fortalecimiento institucional en materia de cambio climático (Comisión Intersecretarial de Cambio Climático, 2012).

La elaboración y el seguimiento de una agenda urbana integrada revisten gran relevancia para que los gobiernos subnacionales de América Latina puedan alcanzar una sinergia mejor con los desafíos del cambio climático que viven actualmente. Una agenda se potencia en la medida de que es capaz de combinar temas como la calidad de vida, los niveles de productividad y la sostenibilidad ambiental urbana con propuestas de adaptación y mitigación del cambio climático e intenta integrar políticas y programas sectoriales con iniciativas relativas al cambio climático en un marco de alianzas estratégicas entre el sector privado, el sector público y la comunidad.

La publicación Low Carbon Green Growth Roadmap for Asia and Pacific (CESPAP, 2012) identifica cinco ámbitos principales en que los gobiernos deben concentrar esfuerzos para impulsar un cambio en las emisiones de carbono de las ciudades: a) mejorar la calidad del crecimiento y maximizar el crecimiento neto; b) cerrar la brecha entre las políticas económicas y la eficiencia energética y ecológica mediante cambios en la estructura invisible de la economía (regulaciones, precios, estilos de vida, entre otros); c) planificación y diseño ecoeficiente de las infraestructuras mediante la transformación de la estructura visible de la economía (infraestructura física, transporte, edificios, sistemas de energía); d) ver la economía baja en carbono como una oportunidad de negocio; e) formular y aplicar estrategias de desarrollo que tengan en cuenta una senda baja en emisiones. Es importante subrayar que, para que se pueda concretar el cambio en las emisiones, se necesitan inversiones en investigación y desarrollo, así como los recursos financieros que permitan realizar los cambios necesarios en tecnología y planeamiento (CESPAP, 2012).

Otra metodología que también puede auxiliar a los gobiernos a conducir la gestión de la reducción de las emisiones GEI es la Guía para desarrollar infraestructura ecoeficiente y socialmente inclusiva (Naciones Unidas, 2011), en la que se sugiere priorizar la infraestructura urbana sostenible; para ello es necesario equilibrar las necesidades a corto plazo con la visión a largo plazo de la sostenibilidad ambiental. La Guía también señala como principios la necesidad de tener en cuenta no solo el valor económico de la infraestructura, sino también el valor social y el ambiental, así como integrar a los diversos actores e instituciones en el proceso de construcción de infraestructura ecoeficiente. Asimismo, se señala la importancia de ver la economía verde como una oportunidad para el desarrollo económico y bienestar de sus habitantes.

Actualmente son varias las ciudades del mundo que trabajan en la integración de iniciativas de mitigación y adaptación al cambio climático en sus procesos de gestión urbana. Un movimiento importante es el Pacto Climático Global de Ciudades o “Pacto de la Ciudad de México”, firmado en 2010 en Ciudad de México y al que adhirieron 207 ciudades del mundo con el apoyo de organizaciones internacionales como el Consejo Mundial de Alcaldes sobre Cambio Climático, ICLEI, Ciudades y Gobiernos Locales Unidos (CGLU) y el Club de Madrid. Las ciudades firmantes se comprometieron, entre otras cosas, a desarrollar iniciativas locales de mitigación de GEI reduciendo las emisiones de su sistema de transporte y mejorando la gestión de los residuos sólidos y la energía. Las ciudades que firmaron el “Pacto de la Ciudad de México” se dividieron en dos grandes grupos: las que asumieron el compromiso de implementar medidas de mitigación y adaptación al cambio climático, comenzando
con la preparación de su inventario de emisiones, el diseño y la implementación de un plan de acción climática, así como la adopción de legislación local que favorezca la reducción de emisiones GEI; y un segundo grupo de ciudades que ya tenían en marcha iniciativas de adaptación y mitigación del cambio climático y se comprometieron a cuantificar y verificar sus avances en la reducción de las emisiones y a preparar los informes pertinentes (Fundación Pensar, 2012). En el primer informe anual del “Pacto de la Ciudad de México”, las ciudades comunicaron que estaban ejecutando 297 acciones de mitigación de GEI; de ellas, 48 eran planes de acción climática; 50 de gestión adecuada de los residuos sólidos; 20 de eficiencia energética en el alumbrado de las vías públicas; 23 de transporte sostenible; 20 de educación medioambiental, y 22 de reducción del uso del automóvil (Fundación Pensar, 2012).

En América Latina, el Estado de São Paulo está desarrollando iniciativas cuyos objetivos son la interrelación y la conformidad entre los diferentes niveles de gobierno para alcanzar las metas urbanas de mitigación y adaptación al cambio climático. En el artículo 8° de la Política Estadual de Cambio Climático de São Paulo (PEMC) se propone que la evaluación ambiental estratégica del proceso de desarrollo sectorial incorpore un enfoque sistémico en el análisis de las consecuencias ambientales de políticas, planes y programas encaminados a combatir el cambio climático, teniendo en cuenta que se deben considerar las características propias de las localidades y modelos regionales y promover una acción integrada de las diferentes instituciones públicas. En el recuadro III.8 se presentan más detalles de la política antes mencionada.

RECUADRO III.8
INSTRUMENTOS JURÍDICOS E INSTITUCIONALES DE LA POLÍTICA DE CAMBIO CLIMÁTICO DEL ESTADO DE SÃO PAULO

El Gobierno del Estado de São Paulo fue uno de los pioneros del país y de América Latina y el Caribe a la hora de formular medidas de protección contra el cambio climático y en 1995 estableció el Programa estatal de cambio climático de São Paulo (PROCLIMA) por medio de la Resolución SMA n° 22/95, y creando en 2008 el Programa FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) de investigación del cambio climático. La Secretaría del Medio Ambiente del Estado de São Paulo (SMA) y la Compañía de Tecnología de Saneamiento Ambiental del Estado de São Paulo (CETESB) son responsables de varios programas y acciones para combatir el cambio climático a nivel estatal; entre ellos cabe destacar el Foro paulista de cambio climático global y biodiversidad y el Programa estatal de prevención de la destrucción de la capa de ozono (PROZONESP).

Con la promulgación de la Política Estatal de Cambio Climático (PEMC) —Ley Estatal 13.798/09— se formuló el Plan estatal participativo de adaptación a los efectos del cambio climático, se creó el Comité gestor de la PEMC y se confeccionó el Inventario de emisiones de gases de efecto de invernadero. Por medio de estos instrumentos se ampliaron las medidas de protección contra el cambio climático. La PEMC se reglamentó mediante el Decreto 55.947/10 que, sobre la base de las emisiones de 2005, se fijó como objetivo reducir un 20% las emisiones GEI en 2020. La Constitución brasileña de 1988 estableció que la responsabilidad de legislar sobre la protección del medio ambiente se comparte entre el Gobierno federal, estados y municipios, lo que refuerza la necesidad de que los estados elaboren sus políticas específicas. Otro hecho importante es que los gobiernos estaduales y municipales también forman parte de la CMNUCC, responsable de la elaboración de sus estimaciones de las emisiones GEI, con el objetivo de apoyar la sociedad en la identificación de las prioridades locales y adopción de medidas más adecuadas para mitigar estas emisiones.

En el estado de São Paulo, la PEMC se basa en el concepto de desarrollo sostenible, en la prevención y adaptación a los eventos derivados de fenómenos climáticos, en la responsabilidad social y en la acción gubernamental. Su objetivo general es establecer un compromiso del estado frente a los desafíos del cambio climático, determinar las condiciones para las adaptaciones necesarias a los impactos derivados del
Recuadro III.8 (conclusión)

El sistema de gestión de la PEMC está compuesto por su Comité gestor, formado por diferentes secretarías del gobierno del estado, y por el Consejo Estadual de Cambio Climático, compuesto por representantes estatales, de los municipios y de la sociedad civil. El Comité gestor tiene el objetivo de acompañar la elaboración y la implementación de los planes y programas, que deberán evaluarse y revisarse cada cuatro años. Por su parte, el Consejo Estadual es de carácter consultivo y tiene la finalidad de acompañar la implementación y de fiscalizar la ejecución de la PEMC. El pleno del Consejo está formado por 42 miembros y sus respectivos suplentes: 14 representantes de organismos y entidades gubernamentales estatales; 14 representantes de las municipalidades, y 14 representantes de la sociedad civil.

La PEMC se incorporó en diversas políticas estatales -entre ellas, la Política Estadual de Recursos Hídricos- que deben tener en cuenta los efectos del cambio climático a la hora de definir las áreas de mayor vulnerabilidad y las acciones de prevención, mitigación y adaptación que dicha política propone. Es responsabilidad de los comités de cuencas hidrográficas el acompañamiento de los indicadores sobre calidad de los recursos hídricos, incorporados en sus planes para las cuencas hidrográficas, que se centra en una gestión adecuada en el ámbito de la PEMC.

Una de las principales herramientas propuestas por la PEMC es el Inventario de emisiones de gases de efecto de invernadero, que detalla las fuentes de emisión y absorción por sumideros de GEI y forma parte de la Comunicación Estadual, coordinada por PROCLIMA con el apoyo de la SMA. La Comunicación se presenta cada cinco años y según la metodología del IPCC. También se publica la cartografía de vulnerabilidades, que forma parte de las medidas de la Defensa Civil, y el plan de acción participativo de adaptación al cambio climático. La comunicación se presenta al Comité gestor y también se lleva a cabo una consulta pública, cuyo documento electrónico queda disponible en Internet por un período mínimo de 30 días, a fin de que la sociedad civil pueda aportar comentarios y sugerencias.

Es importante destacar que la implementación de la PEMC en las regiones metropolitanas presenta desafíos propios de gestión, debidos a la complejidad y heterogeneidad de esos territorios, que agrupan municipios con diferentes capacidades técnicas, institucionales y financieras. Otro desafío propio de la gobernanza de las regiones metropolitanas es la necesidad de intensa y permanente articulación institucional, intra e intergubernamental, entre los distintos niveles y sectores de gobierno que actúan en el mismo territorio.

Entre los principales desafíos del gobierno del Estado de São Paulo para alcanzar las metas de la PEMC, principalmente en relación con el objetivo de reducción del 20% de las emisiones GEI en 2020, cabe mencionar: a) la articulación entre las políticas públicas en los tres niveles de gobierno; b) la articulación institucional que asegure el funcionamiento del modelo de gestión propuesto; c) la incorporación de los planes y programas en las diversas políticas públicas sectoriales; d) el fortalecimiento, por medio de apoyo técnico y financiero, de las instancias municipales de las regiones metropolitanas responsables de los temas ambientales, teniendo como objetivo el desarrollo de iniciativas de protección contra el cambio climático.

Fuente: Elaboración propia.

F. Consideraciones finales

Las ciudades del mundo están poniendo en práctica iniciativas para reducir las emisiones GEI y comienzan a prepararse para los efectos del cambio climático. Los ejemplos existentes muestran que ahora ya es posible implementar medidas encaminadas a transformar la agenda pública local y nacional en las que
el cambio climático ha de integrarse transversalmente en los distintos ámbitos y temas que forman la agenda de los gobiernos urbanos. En materia de mitigación, ello supone identificar oportunidades para lanzar iniciativas en sectores donde tradicionalmente se ha promovido la reducción de emisiones de GEI, como los transportes y la demanda energética inmobiliaria, así como reconocer nuevas oportunidades en ámbitos poco aprovechados, como son la infraestructura urbana, la planeación y el diseño de las ciudades. El reto para las ciudades latinoamericanas radica en desarrollar iniciativas de mitigación que presten atención a la reducción de emisiones y que a su vez contribuyan a cerrar las brechas en materia de infraestructura urbana y bienestar en las ciudades. La agenda climática no se contrapone con la del desarrollo económico; de hecho, en el contexto actual ofrece una vía para que las ciudades redefinan su papel en las economías nacionales buscando nuevos modelos de crecimiento que incluyan calidad ambiental. Las nuevas inversiones en ciudades verdes abren también oportunidades para la creación de empleo y bienestar, además de los beneficios de iniciativas de mitigación sobre la contaminación ambiental, la seguridad, la salud y la habitabilidad de las ciudades, y es por ese motivo que los gobiernos locales pueden potenciar los beneficios de las medidas adoptadas. Hacer de la mitigación un aliado del desarrollo local no es, sin embargo, un proceso automático, ya que supone fomentar un enfoque ecosistémico en la producción de la ciudad, que se integre en la planeación urbana y en la ejecución de nueva infraestructura, así como en los planes de desarrollo económico urbano, promoviendo la incorporación de criterios de relevancia ambiental en las políticas económicas con miras a potenciar un desarrollo bajo en carbono. Es en este sentido que se justifica una visión integrada en los diversos sectores, tanto para articular las medidas como para equilibrar las prioridades en lo que respecta a la equidad social y ambiental.

Por supuesto, estas iniciativas locales han de integrarse en el marco más amplio de la agenda nacional e internacional de mitigación, teniendo en cuenta tanto los ámbitos y potencialidades de acción de las distintas instancias como el peso potencial que las áreas urbanas tienen en la mitigación regional y mundial, a la vez que se identifican las implicaciones (grados, escalas, diferentes lugares) que las opciones de política pública tienen para diversos grupos poblacionales. Un elemento clave para potenciar esta nueva mirada y producir esos beneficios múltiples es el desarrollo de un nuevo tipo de gestión urbana, con una visión integral y sistémica y sobre una base territorial y no sectorial. Más aún, la agenda de mitigación no puede estar desconectada de la adaptación al cambio climático, y menos en América Latina, donde se concatenan vulnerabilidad social y ambiental. La mitigación es necesaria para reducir los costos de la adaptación a mediano y largo plazo; por su parte, la transformación de la estructura e infraestructura urbana y de los sistemas de gestión son parte esencial de las mejoras de la sostenibilidad del sistema urbano.

Bibliografía

CESPAP (Comisión Económica y Social para Asia y el Pacífico) (2012), Low Carbon Green Growth Roadmap for Asia and the Pacific, Bangkok, Naciones Unidas.

Galindo, L.M., C. de Miguel y J. Ferrer (2010), Gráficos vitales del cambio climático para América Latina y el Caribe, Santiago de Chile, Comisión Económica para América Latina y el Caribe (CEPAL)/Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).

IV. Vulnerabilidad y adaptación al cambio climático

Roberto Sánchez Rodríguez

A. Introducción

Uno de los grandes retos para el desarrollo de las áreas urbanas de América Latina es reducir la exposición a los riesgos asociados a desastres hidrometeorológicos y climáticos y elaborar alternativas de adaptación a la variabilidad y el cambio climático en el siglo XXI (CEPAL, 2009; Mansilla, 2010). La comunidad internacional ha reconocido la importancia de ese desafío y ha empezado a prestar cada vez más atención a las alternativas que aspiran a vincular los esfuerzos para reducir los impactos negativos del clima con los problemas del desarrollo urbano (Corfée-Morlot y otros, 2009; Norman, 2009; Prasad y otros, 2009; Banco Mundial, 2011a y 2011b; ONU-Hábitat, 2011d; EIRD, 2012). A pesar de ello, pocas ciudades cuentan hasta ahora con programas para prevenir los peligros asociados a eventos hidrometeorológicos y climáticos o han diseñado estrategias, políticas y planes de adaptación al cambio climático en América Latina.

La información y el conocimiento generados por la comunidad internacional sobre los riesgos asociados a los eventos hidrometeorológicos y climáticos se han multiplicado en la última década. Desgraciadamente, esa información no suele estar al alcance de los actores a nivel local. En este capítulo se intenta hacer accesible esa información a los tomadores de decisiones y los planificadores, así como a todos los actores que inciden en la vida urbana local. Su objetivo es contribuir a desarrollar estrategias, políticas y medidas encaminadas a reducir la vulnerabilidad y fomentar la adaptación al cambio climático. A lo largo del texto se recopila, se analiza y se sistematiza la información internacional sobre estos temas que puede ser de utilidad en las acciones de desarrollo local. Las áreas urbanas de América Latina cuentan con recursos limitados para invertir en la prevención y reducción del riesgo a las amenazas climáticas, en la adaptación al cambio climático y en el desarrollo local. Es por ello que la

11 Con la colaboración de Fernando Aragón, Freddy Arteaga, Fernando Briones e Ignacio Lorenzo.
coherencia entre esas tres agendas nos parece esencial (Schipper y Pelling, 2006; Lemos y otros, 2007; OCDE, 2009; PNUD, 2010; Banco Mundial, 2011b; ONU-Hábitat, 2011d; EIRD, 2012).

En el presente capítulo se reconocen los siguientes enfoques, señalados en la bibliografía internacional, para la planificación de la adaptación al cambio climático (ONU-Hábitat, 2011a):

- Enfoque que hace hincapié en los impactos biofísicos
- Enfoque que hace hincapié en la vulnerabilidad a los peligros naturales
- Enfoque para el estudio de la vulnerabilidad social (centrado en los factores sociales y económicos que crean vulnerabilidad al cambio climático)
- Enfoque para el estudio de la resiliencia
- Enfoque para la definición de políticas de adaptación (una vez determinados los impactos y riesgos futuros del cambio climático)

Las sugerencias del capítulo combinan actividades de varios de esos enfoques de conformidad con las recomendaciones de diversas organizaciones internacionales en el sentido de integrar la prevención, la reducción de los riesgos a los desastres asociados a eventos hidrometeorológicos y la vulnerabilidad con la adaptación a la variabilidad y el cambio climáticos (FICR, 2006, 2008 y 2009; USAID, 2007; Benson y Twigg, 2007; CARE, 2009; CRID, 2009; PNUD, 2010a; Banco Mundial, 2010 y 2012; ONU-Hábitat, 2010 y 2011a; EIRD, 2012; IISD, 2012; Turnbull y Turvill, 2012; Turnbull, Sterrett y Hilleboe, 2013). Los elementos conceptuales y operativos comunes a esos enfoques son varios, y permiten establecer una estructura coherente entre ellos. Destaca el caso de la vulnerabilidad como concepto analítico y operativo; de ahí que lo consideremos un elemento central de los trabajos que aspiran a integrar la agenda del riesgo de desastres y también para el proceso de adaptación. Entre los aspectos operativos comunes destaca el uso de enfoques participativos, la elaboración de enfoques multidimensionales y la importancia de vincularlos a los planes y las necesidades del desarrollo local. Esta propuesta permite cumplir con la obligación y la necesidad de los gobiernos locales en el sentido de mejorar la prevención y la reducción del riesgo de desastres asociados a eventos hidrometeorológicos y climáticos.

En el diagrama IV.1 se ilustra el enfoque de este capítulo, y se destaca una visión integrada de la adaptación al cambio climático, la prevención y la reducción del riesgo de desastres, así como del desarrollo local. Entre las ventajas de este enfoque podemos citar las siguientes:

- El Marco de Acción de Hyogo (MAH) 2005-2015 (UNISDR, 2005), orientado hacia la prevención y reducción del riesgo de desastres, ha creado una estructura operativa en un creciente número de gobiernos nacionales, subnacionales y municipales en los países de la región. Se cuenta, además, con el apoyo de una serie de organizaciones internacionales que fomentan y apoyan la creación y la puesta en práctica de esos esfuerzos. En comparación, es escaso el número de ciudades de la región que han elaborado estrategias y planes de adaptación al cambio climático y, por lo general, se trata de ciudades grandes. Sin embargo, las ciudades pequeñas y medianas son las que crecen con mayor rapidez en la región y las que tienen mayores oportunidades para reorientar su crecimiento. Integrar la estructura operativa para la reducción del riesgo de desastres con la adaptación al cambio climático evita duplicar esfuerzos y recursos para atender los impactos de los eventos hidrometeorológicos y del cambio climático. Por otra parte, crea capacidades útiles para ambos procesos y da coherencia a las medidas a corto, mediano y largo plazo.
- Las lecciones aprendidas (positivas y negativas) de los trabajos para reducir el riesgo de desastres son útiles para la adaptación al cambio climático, que es un proceso más reciente y con pocos avances hasta ahora en la región.
• Un problema recurrente de las estrategias y medidas para reducir el riesgo de desastres asociados a eventos hidrometeorológicos es la poca o nula atención a la prevención de los desastres. A pesar de ser un elemento central del MAH, se han priorizado los impactos causados por esos eventos y no su prevención y la reducción de la vulnerabilidad. El estudio de la vulnerabilidad con un enfoque multidimensional en la adaptación al cambio climático permite que las medidas de prevención y la reducción del riesgo de desastres sean más eficaces.

• Este enfoque permite diseñar acciones con múltiples beneficios para el desarrollo local y reforzar la resiliencia y las oportunidades de desarrollo sostenible de las comunidades.

DIAGRAMA IV.1
AMÉRICA LATINA: VISIÓN INTEGRADA DE LA PREVENCIÓN Y LA REDUCCIÓN DEL RIESGO DE DESASTRES Y LA ADAPTACIÓN AL CAMBIO CLIMÁTICO EN ÁREAS URBANAS

Fuente: Elaboración propia.

El presente capítulo se divide en tres partes. En la primera se consideran los aspectos más relevantes de la prevención y la reducción del riesgo de desastres asociados a eventos hidrometeorológicos y climáticos. En la segunda parte se analizan los elementos que ayudan a conciliar la prevención del riesgo de desastres con el fomento de la adaptación al cambio climático. En la tercera parte se abordan aspectos que contribuyen a vincular entre sí la vulnerabilidad, la adaptación y el desarrollo urbano sostenible y se sugieren medidas operativas para desarrollar en las áreas urbanas un proceso de adaptación participativo a corto, mediano y largo plazo.

B. Prevención, gestión y reducción de desastres hidrometeorológicos y climáticos

En la introducción a este capítulo se ha señalado la importancia de vincular los trabajos para prevenir y reducir el riesgo de desastres a las iniciativas que fomentan la adaptación al cambio climático, dos agendas auspiciadas por las Naciones Unidas: la reducción del riesgo de desastres mediante el MAH 2005-2015 (http://www.unisdr.org/we/coordinate/hfa) y la agenda del cambio climático de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (http://unfccc.int/2860.php). Un número significativo de organismos internacionales apoyan ambos marcos de acción a través de una serie de medidas a nivel nacional, subnacional, regional y local, que son el resultado de haber desarrollado en paralelo dos agendas para tratar temas interrelacionados. Es por ello que diversas publicaciones internacionales han empezado a subrayar que la prevención y la reducción del riesgo de desastres es

1. El Marco de Acción de Hyogo (MAH)

Tras dar un repaso a la bibliografía internacional sobre este tema, puede verse que en ella se señala que en América Latina avanzan los esfuerzos para prevenir y reducir el riesgo de desastres asociados a eventos hidrometeorológicos y climáticos (EIRD, 2010; Khamis y Osorio, 2013). El Marco de Acción de Hyogo 2005-2015 ha logrado subrayar lo graves que pueden ser esos desastres para el desarrollo nacional y local y, en particular, para los países en desarrollo. En este contexto, cabe destacar que no ha sido fácil integrar estrategias operativas, entre otras cosas por las dificultades para entender de manera sistemática e integral los procesos generadores del riesgo de desastres, su caracterización, la identificación de actores y el diseño de estrategias de intervención. Por ello, la reducción de riesgos se ha centrado hasta ahora en un enfoque correctivo y no preventivo (EIRD, 2008; Khamis y Osorio, 2013).

El MAH define cinco ámbitos prioritarios: hacer de la reducción de los riesgos de desastres una prioridad; mejorar la información sobre riesgos y las alertas tempranas; fomentar una cultura de seguridad y resiliencia; reducir los riesgos en sectores clave y fortalecer la preparación a los riesgos de desastres para lograr respuestas eficaces12. La mayor parte de estos ámbitos tienen un vínculo potencial con la agenda de adaptación al cambio climático. Sin embargo, el MAH no incorpora ese vínculo en su agenda de trabajo (UNISDR, 2005). Las medidas que se sugieren en el marco de acción toman en cuenta: la protección ambiental; las necesidades sociales de la población más vulnerable; la planificación física; la protección de infraestructuras relevantes; la reducción de riesgos en actividades productivas; la creación de oportunidades para la participación del sector privado en la disminución de riesgos, y la planificación del proceso de recuperación (UNISDR, 2005; EIRD, 2012; Khamis y Osorio, 2013). La integración de la reducción de riesgos y la adaptación al cambio climático requieren un esfuerzo para vincular las medidas entre ambas agendas. A lo largo de este capítulo se sugieren varias alternativas en ese sentido.

El análisis de la Estrategia Internacional de las Naciones Unidas para la Reducción del Riesgo de Desastres (EIRD, 2008) muestra que esta estrategia ha sido impulsada por una compleja red de actores sociales entre los que destacan especialmente organizaciones no gubernamentales y agencias de cooperación internacional. Estas organizaciones han apoyado y desarrollado un creciente número de proyectos, no siempre debidamente sistematizados y coordinados; sin embargo, aún se detectan retrasos significativos en muchos países, en particular a nivel local. En el análisis de las experiencias de la EIRD sobresalen los siguientes aspectos:

- Se reconoce que el riesgo de desastres continúa aumentando, sobre todo en las áreas más vulnerables. Los avances de las medidas de control y reducción han sido lentos. Asimismo, se reconoce que se trata de una agenda que requiere mayor atención.
- Se deben incrementar sustancialmente las inversiones destinadas a la reducción del riesgo de desastres en la región.
- Es necesario establecer, mediante indicadores objetivos y metas cuantificables, sistemas de monitoreo de las condiciones de riesgo y del impacto de la puesta en práctica de políticas centradas en la reducción del riesgo.
- La aplicación de políticas de reducción de riesgos debe apoyar los objetivos de adaptación al cambio climático.

12 El lector puede encontrar mayor información sobre el Marco de Acción de Hyogo en la página web http://www.unisdr.org/we/coordinate/hfa.
• Las ciudades son un factor clave en lo que respecta al aumento del riesgo a desastres. Las autoridades locales deben elaborar e implementar sus propios planes, incluidos los planes de atención a emergencias multisectoriales, con una participación activa de la sociedad civil.

• Es necesario profundizar en el conocimiento de las causas del riesgo de desastres en las dinámicas del desarrollo urbano.

• La gestión y la prevención del riesgo de desastres en ciudades deben considerarse un proceso social vinculado estrechamente al desarrollo local en todas sus dimensiones.

• Se debe dar prioridad al apoyo y el fortalecimiento de las capacidades de los gobiernos locales, haciendo hincapié en sus procesos de desarrollo local y, según sus respectivos contextos y prioridades, en la manera de diseñar e implementar políticas de prevención y reducción del riesgo.

Las Naciones Unidas sugieren que la prevención y la reducción de riesgos en las áreas urbanas de América Latina se consideren un proceso de aprendizaje que se inscribe en el reto de fomentar un desarrollo inclusivo y equilibrado en un contexto de grandes demandas sociales y de un crecimiento urbano deficiente (EIRD, 2008). Ese proceso inclusivo implica atender las dificultades que plantean la organización social, la representación colectiva, la participación y la concertación con las comunidades en su calidad de actores corresponsables del control del riesgo de desastres.

En un estudio posterior de las Naciones Unidas (UNISDR/ITC/PNUD, 2010) se recopilan lecciones aprendidas en varios casos de estudio a nivel local centrados en la reducción del riesgo de desastres en países desarrollados y en desarrollo. Algunas de esas lecciones son relevantes también para la adaptación al cambio climático en áreas urbanas, por lo que resulta útil analizarlas brevemente.

En el estudio se subraya que la prevención y la reducción del riesgo de desastres constituyen un proceso a largo plazo que se enfrenta a la posibilidad de que se produzcan cambios en los gobiernos locales (tomadores de decisiones y personal técnico encargado de la planificación y su implementación). Esos cambios afectan a la puesta en práctica de las medidas encaminadas a reducir el riesgo de desastres.

Por tratarse de un problema recurrente en muchas ciudades, es importante que participen otros actores urbanos, ya que su participación contribuye a dar continuidad al proceso de reducir el riesgo de desastres. No obstante, las lecciones aprendidas reconocen que captar el interés y lograr la participación de los actores urbanos no es sencillo, ya que aun después de conseguirse pueden ser de carácter temporal, por lo que es necesario un esfuerzo continuo para mantenerlo, incluido un financiamiento adecuado.

Otras lecciones relevantes de ese estudio son: reconocer que la reducción del riesgo de desastres requiere tiempo, liderazgo político, un marco normativo adecuado y el apoyo de múltiples actores urbanos. El programa de trabajo debe desarrollarse en etapas progresivas que permitan a los gobiernos locales y los actores participantes dar seguimiento, analizar, evaluar y rectificar las medidas a lo largo del proceso. Un paso importante se da cuando las decisiones y las estrategias se toman y se diseñan a nivel local y reflejan las limitaciones y las realidades de una comunidad dada. En el estudio también se señala la responsabilidad de los gobiernos locales en el desarrollo de la comunidad y en su protección.

13 Algunas ciudades han tratado de resolver esta dificultad creando una unidad permanente dedicada a la reducción de riesgos para evitar así los problemas causados por la corta duración de los gobiernos locales. En la publicación UNISDR/ITC/PNUD (2010) se destaca la ciudad de Albany (Filipinas), como el primer gobierno local de ese país que creó una unidad permanente para la reducción de riesgos hace ya más de 14 años. Los tomadores de decisiones han podido constatar durante más de 14 años los beneficios que la estabilidad reporta a la tarea de reducir los riesgos de desastres, y ello ha permitido institucionalizar esas tareas dentro de los programas locales de planificación y gobernanza. En México existen los Institutos de Planeación Municipal, que evitan que el cambio de gobierno local (cada tres años) coincida con el cambio en la dirección de esos institutos a fin de dar continuidad a la planeación urbana. No obstante, las oficinas de protección civil encargadas de la reducción y atención a los desastres cambian con cada gobierno local.
contra el riesgo de desastres, de ahí que se recalque la necesidad de fortalecer su capacidad de acción. En ese sentido, hay que destacar que las comunidades deben considerar la reducción de riesgos como una inversión y no como un costo. En una reciente publicación del Banco Mundial se presentan ejemplos del ahorro y los beneficios obtenidos mediante la reducción de riesgos y de la vulnerabilidad, así como el costo que significaría no implementar medidas en ese sentido (Banco Mundial, 2010b). En este estudio se resaltan los siguientes aspectos: una inversión modesta en prevención puede tener enormes beneficios, en particular cuando esas medidas son el esfuerzo coordinado del sector público, el privado y el social; la prevención eficaz no puede recaer solo en una medida o en un discurso; es preciso asegurar un adecuado financiamiento de la infraestructura, los servicios básicos, las alertas tempranas, el acceso a la información sobre amenazas y riesgos y otras medidas similares; por último, una prevención eficiente no solo depende del monto para su financiamiento sino también del tipo de medidas financiadas.

2. Otros enfoques operativos para la gestión del riesgo de desastres

Al analizar las guías metodológicas de diversas organizaciones internacionales para la reducción de desastres, se identifican diferencias y elementos en común útiles para compilar la información que se presenta en esta sección. Las diferencias se deben a la orientación particular de cada organización y quedan reflejadas en el enfoque y las medidas sugeridas en cada guía. La Federación Internacional de Sociedades de la Cruz Roja y de la Media Luna Roja (FICR) es una de las organizaciones con mayor presencia a nivel local en la reducción del riesgo de desastres asociados a eventos hidrometeorológicos y climáticos en países en desarrollo. Cabe destacar el caso de la FICR, que ha publicado varias guías metodológicas para el análisis de la vulnerabilidad y la capacidad adaptativa (AVC, por sus siglas en inglés) (FICR, 2006 y 2008; Benson y Twigg, 2007). En las guías se detallan los pasos a seguir para apoyar la participación de la comunidad en la elaboración de estrategias y planes de acción para la disminución del riesgo de desastres. Su enfoque se basa en un análisis de la vulnerabilidad y las capacidades de la comunidad para pasar de la investigación a la acción, con tres niveles de acción que incluyen 12 pasos:

Nivel 1- Apoyo a la sociedad
1- Entender por qué se propone un AVC.
2- Sensibilizar a los participantes.
3- Desarrollar una estructura de gestión para el AVC.
4- Fijar los objetivos del AVC.

Nivel 2- Del análisis a la planificación
5- Planificar el AVC.
6- Preparar el AVC.
7- Utilizar las herramientas de investigación juntamente con la comunidad.
8- Sistematizar, analizar e interpretar los datos.
9- Devolver la información a la comunidad y decidir las prioridades y acciones de transformación.

Nivel 3- De la planificación a la acción
10-Transformar la vulnerabilidad en capacidades mediante acciones y prácticas.
11-Preparar recomendaciones e informes para las autoridades locales, los donantes y los asociados.
12-Implementar el programa: proyectos de reducción del riesgo juntamente con la comunidad.
Otras organizaciones internacionales que apoyan la reducción del riesgo de desastres con un enfoque comunitario también han elaborado guías metodológicas. Destacamos dos que, en nuestra opinión, facilitan una transición hacia las tareas para reducir el riesgo de desastres con un enfoque comunitario y la adaptación al cambio climático.

Cuatro organizaciones no gubernamentales (el Instituto Internacional para el Desarrollo Sostenible, el Instituto del Medio Ambiente de Estocolmo, la Unión Internacional para la Conservación de la Naturaleza y los Recursos Naturales y Helvetas) crearon CRISTAL, una herramienta de evaluación del riesgo comunitario, de la adaptación y los medios de subsistencia (IISD, 2012). Esta herramienta procura sistemáticamente definir el impacto de un proyecto en algunos de los determinantes locales de la vulnerabilidad y la exposición al cambio climático e intenta integrar la reducción del riesgo de desastres y la adaptación al cambio climático. CRISTAL se ha utilizado en diversos países de África, Asia y América Latina con la definición de vulnerabilidad que da el IPCC, que la considera una función de la exposición, la sensibilidad y la capacidad adaptativa del sistema (IPCC, 2007). La herramienta tiene un enfoque comunitario, examina el riesgo y se centra en la adaptación y los medios de vida. Sus resultados permiten identificar los recursos y los medios de vida más afectados por amenazas climáticas, determinar los ajustes necesarios para proyectos existentes y nuevas actividades para apoyar la adaptación al cambio climático y crear una lista de los resultados de adaptación deseados y los factores que se deben monitorear (IISD, 2012). CRISTAL y su manual del usuario están disponibles en español en http://www.iisd.org/cristaltool/download.aspx.

En el Manual para el análisis de capacidad y vulnerabilidad climática de CARE se propone una metodología orientada hacia el análisis de la vulnerabilidad al cambio climático y la capacidad adaptativa a nivel comunitario. Asimismo, se procura combinar la información comunitaria con la información científica a fin de conocer mejor los impactos locales del cambio climático (CARE, 2009). El enfoque metodológico de CARE utiliza una definición de la vulnerabilidad similar a la empleada en CRISTAL (IISD, 2012) y basada en la definición del IPCC (2007). CARE articula la reducción del riesgo de desastres con la adaptación a nivel comunitario e individual.

3. La reducción de la vulnerabilidad en el contexto de la reducción del riesgo de desastres y el cambio climático

Es importante señalar que existen algunas diferencias en la forma en que se conceptualiza la vulnerabilidad en el contexto de la reducción del riesgo de desastres hidrometeorológicos y climáticos, mencionada en la sección anterior, con respecto a la agenda de adaptación al cambio climático. En la bibliografía dominan tres escuelas de pensamiento, y cada una de ellas tiene su propia conceptualización de la vulnerabilidad (Füssel, 2007; Morales, 2012). El primer enfoque es el de riesgo-peligro, característico de la bibliografía sobre reducción de riesgos de desastres y fomentado mediante los planes del UNISDR, en los que la vulnerabilidad es la relación dosis-respuesta entre un riesgo exógeno al sistema y sus efectos adversos. El segundo enfoque es el constructivista social, ampliamente utilizado en la economía política y la geografía humana, y se refiere a la vulnerabilidad (social) como una condición a priori presente en un hogar o una comunidad y determinada por factores socioeconómicos y políticos. Además, se relaciona con las capacidades sociales de una comunidad para hacer frente a presiones externas (Füssel, 2007; Morales, 2012).

El tercer enfoque es el de las mediciones integrales y define la vulnerabilidad como una medida integrada de la magnitud que cabe esperar de los efectos adversos en un sistema, provocados por un nivel dado de ciertos estresores externos. Para esta escuela de pensamiento, la vulnerabilidad incluye una dimensión externa representada por la “exposición” de un sistema a las variaciones del clima —este atributo está íntimamente ligado al primer enfoque—, pero también una dimensión interna, a saber, los factores no climáticos, comprendida en la “sensibilidad” y la “capacidad adaptativa” a esos estresores. Este atributo es equiparable a las causas socioeconómicas de la sensibilidad y la exposición, propias de
la segunda escuela de pensamiento (Adger, 2006; IPCC, 2007; Füssel, 2007). Esta definición de trabajo de la vulnerabilidad beneficia al proceso de adaptación al cambio climático en mayor medida que las dos anteriores, empleadas en la agenda de reducción del riesgo de desastres considerada en la sección anterior. El análisis combinado de sus tres elementos -exposición, sensibilidad y capacidad adaptativa- ayuda a conocer mejor las causas subyacentes de la vulnerabilidad. Cabe señalar que se trata de un insumo importante en el análisis de las necesidades y alternativas de adaptación, pero también de una información útil para la prevención del riesgo de desastres, que facilita vincular el desarrollo local a las respuestas a eventos climáticos.

4. Marco analítico

Sin pretender realizar un análisis exhaustivo de los aspectos conceptuales que incluye el estudio de la vulnerabilidad, es útil considerar algunos aspectos relevantes. A continuación presentamos algunos lineamientos extraídos del análisis de la literatura internacional dedicada al tema de la vulnerabilidad y la adaptación al cambio climático. Dicha bibliografía incluye un creciente número de guías metodológicas y materiales de apoyo a la planificación de la adaptación, obra de diversas organizaciones internacionales (USAID, 2007; PNUD, 2010a; ONU-Hábitat, 2011a; Banco Mundial, 2011a; EIRD, 2012; Turnbull, Sterrett y Hilleboe, 2013).

En primer lugar cabe destacar la importancia de considerar la adaptación como un proceso y no un estado final (Hinkel y otros, 2009; Hulme y otros, 2009; Hofmann, Hinkel y Wrobel, 2011). La información disponible a nivel internacional sobre la adaptación al cambio climático presenta una diversidad de enfoques y experiencias que pueden llevar a considerar la adaptación como un estado final. Es el caso de algunas ciudades de países desarrollados (Londres, Rotterdam, Chicago, Nueva York, entre otras), que han elaborado planes de adaptación cuya atención se centra en los impactos de eventos extremos asociados al cambio climático (City of London, 2010; plaNYC, 2011; Rotterdam Climate Initiative, 2010; Chicago Climate Action Plan, 2012). Una parte importante de esos planes de adaptación está enfocada hacia la construcción de infraestructura para proteger la ciudad de los impactos (por ejemplo, elevación del nivel del mar e inundaciones), lo que lleva a asociar las medidas de adaptación con un estado final. Sin embargo, otros estudios sobre la adaptación al cambio climático recomienden considerarla un proceso flexible (PNUD, 2005 y 2010b; ONU-Hábitat, 2011a). Este enfoque permite realizar ajustes periódicos a medida que se presentan los impactos del cambio climático y las condiciones urbanas (físicas, sociodemográficas, económicas, ambientales) varían en el tiempo. La recomendación se basa en las siguientes razones: aún es difícil identificar con precisión los impactos del cambio climático a nivel local y, en consecuencia, saber qué medidas concretas son necesarias para adaptarse a dichos impactos; las ciudades son entes dinámicos con transformaciones constantes en su estructura socioeconómica y urbana, y esas transformaciones inciden, positiva o negativamente, en las posibilidades de adaptación; los avances en la información y el conocimiento sobre el cambio climático son constantes y contribuyen a mejorar progresivamente las estrategias y políticas de adaptación; es importante recordar que el desarrollo urbano sostenible y la propia planificación urbana también son procesos que requieren ajustes periódicos para incorporar las transformaciones de las necesidades, los valores, los intereses, las condiciones y los recursos de las sociedades urbanas (Blair, 1973; Hogan, 2003).

Este análisis lleva a considerar, como segundo aspecto relevante, que las estrategias, políticas y acciones para prevenir los desastres, reducir la vulnerabilidad y adaptarse al cambio climático deben estar inmersas en las estrategias, políticas y planes de desarrollo local (Ewing y otros, 2008; Hodson y Marvin, 2009). Los procesos que dan origen a la vulnerabilidad y a la variabilidad y el cambio climáticos, y que condicionan las alternativas de adaptación, están directamente vinculados a las características de las comunidades donde tienen lugar, así como a sus problemas y posibilidades de desarrollo (Adger y otros, 2009a y 2009b; Tompkins y otros, 2010). Por ello es importante no pensar que las respuestas a los impactos del cambio climático requieren distraer la atención y los recursos destinados a atender los
problemas y los retos actuales del desarrollo. De igual forma, nos parece relevante no considerar que esas respuestas son una carga adicional a la ya complicada agenda de trabajo de los planificadores urbanos. Antes al contrario, esta publicación aspira a vincular las tareas actuales de planificación, gestión y construcción del espacio urbano al desarrollo de respuestas a la variabilidad y el cambio climáticos, algo que abarca un abanico de alternativas y enfoques creativos que tengan en cuenta los impactos negativos, pero también los que aprovechen las oportunidades de algunos efectos positivos.

La bibliografía internacional distingue dos modalidades de adaptación al cambio climático, bien a través de planes específicos de adaptación, bien integrando las medidas de adaptación en los planes de desarrollo urbano y otras políticas sectoriales a nivel local (Dodman, 2012). En este capítulo se destaca como mejor enfoque aquel en que las estrategias, las políticas y las medidas de adaptación son coherentes y están integradas en los planes y políticas por los que se orienta el desarrollo local.

Como tercer aspecto relevante cabe mencionar las estrategias y políticas destinadas a reducir la vulnerabilidad y fomentar la adaptación a la variabilidad y el cambio climáticos, que requieren procesos inclusivos que promuevan la participación de todo el espectro de actores urbanos. Los gobiernos locales tienen la responsabilidad de proteger a sus ciudadanos y, por lo tanto, recae en ellos la tarea de coordinar las estrategias, políticas y medidas tendientes a reducir la vulnerabilidad y fomentar la adaptación al cambio climático. No obstante, diversas organizaciones internacionales reconocen las limitaciones de los gobiernos locales y subrayan el importante de los esquemas participativos en la elaboración de estrategias y políticas de adaptación (PNUD, 2005, 2010a y 2010b; USAID, 2007; Prasad y otros, 2009; ONU-Hábitat, 2011a; Banco Mundial, 2011a, 2011b y 2012; EIRD, 2012; Turnbull, Sterrett y Hilleboe, 2013). La participación de una amplia gama de actores urbanos (organizaciones sociales, no gubernamentales y comunitarias, asociaciones profesionales, grupos religiosos, la comunidad científica, el sector privado) fortalece el diseño del proceso de adaptación, empodera a los habitantes locales, facilita la implementación del proceso y favorece su sostenibilidad a mediano y largo plazo más allá de la duración de las administraciones de los gobiernos locales (por lo general, tres o cuatro años).

Es importante recalcar que los planes participativos deben trascender la consulta pública. El consenso entre las organizaciones internacionales arriba mencionadas significa elaborar planes inclusivos que promuevan la participación de los actores urbanos en el diseño y la puesta en práctica de las estrategias, políticas y medidas para reducir la vulnerabilidad y fomentar la adaptación a la variabilidad y el cambio climático. Los procesos de adaptación inclusivos reconocen la capacidad de agencia de los individuos, hogares y organizaciones sociales urbanas. Algunas ciudades de países industrializados (Nueva York, Chicago, Toronto, entre otras) han creado sus planes de adaptación al cambio climático mediante procesos que incluyeron a una amplia gama de actores urbanos. América Latina ofrece algunos ejemplos de planes de adaptación al cambio climático, aunque no todos con el mismo nivel de participación ciudadana, entre otras: Montevideo, Santiago, México, D.F., São Paulo, Bogotá y Manizales (Colombia), Quito y Esmeralda (Ecuador) y Tegucigalpa (Honduras). No obstante, es importante reconocer que desarrollar procesos incluyentes en la construcción de respuestas a la variabilidad y el cambio climáticos, o incluso en la planificación urbana, sigue siendo una tarea pendiente en gran mayoría de las ciudades de América Latina.

Un cuarto aspecto es evitar hacer excesivo hincapié en los impactos del clima en las estrategias de adaptación. Varios autores señalan que un énfasis desproporcionado en los impactos de la variabilidad y el cambio climático puede hacer sombra a las oportunidades para reducir la vulnerabilidad social y conectarla con temas relevantes del desarrollo local (Lemos y otros, 2007; Siezt, Boschütz y Klein, 2011). Otros autores señalan que la atención a los impactos climáticos puede reducir la atención a las causas subyacentes del riesgo y resaltan la importancia de saber no solo quiénes son vulnerables, sino también de entender por qué lo son (Orlove 2009; Ribot, 2011). Para ser eficientes a la hora de reducir la vulnerabilidad es necesario conocer las causas que la crean; de ahí que resulte importante vincular las medidas para reducir la vulnerabilidad y crear adaptación a las estrategias, políticas y acciones de los planes de desarrollo local.
Un quinto aspecto relevante es la importancia de reconocer la necesidad de crear y fortalecer las capacidades de los tomadores de decisiones y los planificadores locales, así como de los otros actores urbanos que son parte integral de las estrategias y los planes de respuesta al cambio climático (Corfee-Morlot y otros, 2009; Norman, 2009; Blanco y Alberti, 2009; ONU-Habítat, 2011b). Se trata de capacidades para estudiar la vulnerabilidad, identificar y analizar los posibles impactos del cambio climático y considerar la planificación como un proceso multidimensional a corto, mediano y largo plazo. Esas capacidades permiten: responder a las incertidumbres del cambio climático, tomar en cuenta el efecto acumulativo de sus impactos y favorecer el diseño de estrategias y políticas de adaptación al cambio climático dentro del marco del desarrollo local.

A su vez, dichas capacidades permiten seleccionar mejor las estrategias necesarias para la protección de la ciudad y sus habitantes y combinarlas con el uso de servicios ecosistémicos y otras medidas que contribuyan a reducir su costo y mejorar su eficiencia; también fortalece la gobernanza de la planificación de la adaptación y el desarrollo local. Un beneficio adicional del fomento de las capacidades es la creación de un proceso continuo de aprendizaje dentro de la planificación de la adaptación y del desarrollo local (Hinkel y otros, 2009; Glaas y otros, 2010; Gupta y otros, 2010; Hofmann, Hinkel y Wrobel, 2011). Holden (2008) considera que el aprendizaje es un aspecto relevante, pero poco considerado, de la planificación y una parte fundamental de la adaptación de innovaciones. El monitoreo y la evaluación del proceso de adaptación y de planificación son dos instrumentos útiles para aprender y para mejorar ese proceso (Barnett y Campbell, 201; Arnell, 2010).

El sexto y último aspecto es reconocer la amplia gama de alternativas que permiten reducir la vulnerabilidad y crear adaptación a la variabilidad y el cambio climático más allá de las grandes obras de infraestructura. Las condiciones de cada ciudad son particulares y, por lo tanto, sus respuestas al cambio climático dependen de cada contexto; pero las ciudades también son heterogéneas, y ese contexto varía de manera significativa en el interior del área urbana (Hardoy y otros, 1993). La selección de estrategias y medidas eficaces a nivel de barrio dentro de la ciudad puede hacer menos necesarias las grandes obras de infraestructura para reducir la vulnerabilidad y crear adaptación a la variabilidad y el cambio climáticos. Existe una amplia gama de medidas y servicios ecosistémicos que pueden ayudar a reducir la inversión requerida para responder a la vulnerabilidad a nivel intramura (Roloff, Korn y Gillner, 2009; Bowler y otros, 2010). Este enfoque facilita también la creación de sinergias entre las medidas encaminadas a atender las consecuencias del cambio climático y las destinadas a reducir la pobreza, mejorar las condiciones de vida de la población y del área urbana y fomentar el desarrollo local (Moser y Satterthwaite, 2008; Banco Mundial, 2011b). La planificación multidimensional y participativa desempeña un papel central a la hora de establecer esos vínculos.

a) Elementos para un marco metodológico

El estudio de la vulnerabilidad a la variabilidad y el cambio climáticos es un instrumento útil para la planificación del desarrollo urbano, del desarrollo sostenible, de la prevención y la reducción del riesgo de desastres y la planificación de la adaptación a la variabilidad y el cambio climáticos. Así y todo, es importante tener en cuenta las siguientes características de este concepto analítico:

- La vulnerabilidad a un fenómeno dado es específica en el tiempo y en el espacio geográfico. Por ejemplo, parte de una comunidad puede ser vulnerable a las inundaciones, pero no a las olas de calor o la sequía. De igual forma, no todas las zonas de una ciudad son susceptibles de sufrir inundaciones.
- Al realizar estudios de vulnerabilidad, es importante tener en cuenta que se trata de un concepto analítico que requiere actualizaciones periódicas. La exposición, la sensibilidad y las capacidades para adaptarse a los impactos negativos del clima, que, en conjunto, definen la vulnerabilidad, cambian con el tiempo a medida que los individuos, los hogares, los grupos sociales o las comunidades incrementan o reducen sus recursos para sobreponerse y adaptarse a esos impactos.
• El estudio de la vulnerabilidad permite identificar a la población susceptible de ser afectada por los impactos negativos del clima, por el tipo de daños posibles a los que está expuesta, y las razones que la hacen vulnerable. Además, contribuye a identificar con mayor precisión posible medidas para paliar las consecuencias negativas de los impactos climáticos.

• Los estudios de la vulnerabilidad requieren enfoques interdisciplinarios y transdisciplinarios con contribuciones de las ciencias sociales y las ciencias naturales, así como el conocimiento de las características de las áreas urbanas y sus habitantes.

La diversidad de interpretaciones que durante las últimas dos décadas se le ha dado al concepto de vulnerabilidad puede crear confusión y limitar los beneficios que se puede obtener de su uso. La definición de trabajo de la vulnerabilidad que se ha adoptado en este capítulo señala que el concepto se compone de tres elementos, a saber, exposición, sensibilidad y capacidad adaptativa (IPCC, 2007). Ya se han diseñado diversos mapas de vulnerabilidad al cambio climático para áreas urbanas o rurales o para ámbitos específicos (agua, agricultura, pesca, ecosistemas, forestal, entre otros). Sin embargo, su análisis se basa solo en uno o dos de los elementos que componen el concepto de vulnerabilidad (generalmente, la exposición y/o la sensibilidad). A pesar de que esos mapas contribuyen a conocer mejor la vulnerabilidad, es importante reconocer que no representan una aplicación integral del concepto y que la contribución analítica arriba señalada es limitada.

La característica contextual de la vulnerabilidad implica que su estudio requiera conocer diversas dimensiones del espacio y de la vida urbana, que la literatura científica ha dado en llamar enfoques multidimensionales. El estudio de la exposición y la sensibilidad requiere la compilación y sistematización de la información climática, fisiográfica, socioeconómica y urbana. Aunque la disponibilidad de información para las ciudades varía de país en país, la disponibilidad de información digital sobre variables relevantes para este tipo de estudios en América Latina es cada vez mayor.

En el capítulo II de esta publicación se presenta un análisis de la información climática disponible, de las fuentes que permiten acceder a ella, así como sugerencias para su manejo. Dicha información es útil para estudiar el componente de exposición en el análisis de la vulnerabilidad. Vale la pena resaltar la importancia de tomar en cuenta la información asociada a eventos extremos (por ejemplo, los huracanes, las sequías, las heladas, lluvias atípicas, entre otros) y la información asociada al cambio climático, que permite diseñar escenarios de sus posibles impactos. En el cuadro IV.1 se presenta el tipo de datos y de información y sus posibles fuentes de documentación para las principales amenazas vinculadas a eventos hidrometeorológicos y climáticos en áreas urbanas. También se proporciona una primera imagen del tipo de información útil para el encargado de tomar decisiones a nivel local en el contexto de un estudio de la vulnerabilidad a diversos tipos de amenazas en las áreas urbanas.

14 El clima urbano es un elemento importante de la información climática para el estudio de la exposición. El acceso a datos sobre el efecto de la isla de calor en la ciudad, las temperaturas media y extrema, la precipitación media y extrema diarias y su distribución en el espacio urbano contribuye a estudiar mejor la exposición a eventos hidrometeorológicos y climáticos y al cambio climático en general. En el capítulo II se presenta una breve explicación del fenómeno conocido como islas de calor urbano, y por ese motivo no se explica en detalle en el presente capítulo. Desgraciadamente, es un tema poco estudiado en las ciudades de América Latina.
CUADRO IV.1
INFORMACIÓN SOBRE AMENAZAS:
TIPOS, FUENTES Y MÉTODOS DE EVALUACIÓN

<table>
<thead>
<tr>
<th>Tipos de amenazas</th>
<th>Información requerida por los problemas</th>
<th>Tipos de amenazas: datos, fuentes y métodos de evaluación</th>
</tr>
</thead>
</table>
| Hidrometeorológicas | • Extensión y localización de la superficie inundada o propensa a inundaciones
• Nivel y duración de la inundación
• Velocidad del caudal
• Velocidad de crecimiento del nivel del agua y de descarga
• Cantidad de lodo depositado o en suspensión
• Frecuencia y momento en que se producen (incluida estacionalidad)
• Volumen e intensidad de las precipitaciones (y del deshielo) en las zonas propensas a inundaciones y alrededores
• Obstáculos naturales o de origen humano al flujo del agua y estructuras de control de inundaciones
• Período de alerta
• En zonas costeras: tipo de marea y características de los vientos marinos; altura de las olas provocadas por ciclones | • Registros históricos sobre frecuencia, ubicación, características y efectos de episodios anteriores
• Datos meteorológicos: registros de precipitaciones (y deshielo), y seguimiento (p. ej., pluviómetros)
• Mapeo topográfico y levantamiento altimétrico en zonas cercanas a la costa, sistemas fluviales y cuencas de captación; mapeo geomorfológico; mapeo de fases secuenciales de inundación
• Mapeo de recursos naturales y del uso de la tierra
• Estimación de la capacidad del sistema hidrológico y la cuenca de captación
• Datos hidrológicos sobre caudales, magnitud (incluidas descargas máximas) y frecuencia de las inundaciones; morfología fluvial; propiedades de infiltración del suelo
• Estimaciones hidrológicas sobre descargas, caudales y características asociadas de futuras inundaciones; análisis de la frecuencia de inundaciones
• En zonas costeras: registros de mareas y niveles del mar, datos meteorológicos sobre velocidad y dirección de los vientos
• Previsiones meteorológicas a largo plazo y estacionales; modelos de cambio climático. |
| Tormentas de viento (incluidos huracanes, ciclones tropicales y tornados) | • Localización y extensión de las áreas que pueden verse afectadas
• Frecuencia (incluida estacionalidad) y patrones de dirección del viento
• Velocidad y dirección del viento; escalas de intensidad del viento y los temporales (p. ej., Beaufort); escalas locales relativas a huracanes/tifones
• Condiciones de presión asociadas, precipitaciones y mareas de tormenta
• Período de alerta | • Registros históricos y climatológicos sobre frecuencia, localización, características (incluidas trayectorias de ciclones y tornados) y efectos de episodios anteriores en el área del proyecto y en áreas vecinas (o países vecinos) que afrontan condiciones similares
• Registros meteorológicos de velocidades y direcciones del viento en estaciones meteorológicas
• Previsiones meteorológicas a largo plazo y estacionales; modelos de cambio climático
• Topografía y geomorfología de las superficies afectadas (si existe riesgo de inundaciones por fuertes precipitaciones o mareas de tormenta, véanse también datos relativos a inundaciones) |
| Sequía | • Nivel de precipitaciones, déficits
• Frecuencia y momento en que se producen precipitaciones y sequías (incluida estacionalidad); duración de los períodos de sequía
• Nivel del agua (acuíferos, ríos, lagos, otros)
• Características de retención del agua en los suelos
• Período de alerta
• Aspectos biológicos asociados (p. ej., plagas, plantas invasoras) | • Mediciones regulares (p. ej., pluviómetros) y mapeo de precipitaciones y deshielo
• Estudios/análisis del tipo de suelos y su contenido de humedad
• Estudios y seguimiento de fuentes de agua
• Estudios de la vegetación (incluido mapeo y fotografías aéreas) y seguimiento del rendimiento de los cultivos
• Registros históricos sobre frecuencia, localización, características y efectos de episodios anteriores (incluidos registros a largo plazo de fluctuaciones en las precipitaciones)
• Previsiones meteorológicas a largo plazo y estacionales; modelos de cambio climático |
Cuadro IV.1 (conclusión)

<table>
<thead>
<tr>
<th>Tipos de amenazas</th>
<th>Información requerida por los problemas</th>
<th>Tipos de amenazas: datos, fuentes y métodos de evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deslizamientos de tierras</td>
<td>• Volumen y tipo de material desplazado; superficie enterrada o afectada; velocidad</td>
<td>• Determinación de la localización y la extensión de deslizamientos anteriores de tierras o fallas del terreno mediante estudios topográficos, mapeos y fotografías aéreas</td>
</tr>
<tr>
<td></td>
<td>• Características naturales que afectan a la estabilidad de las laderas (composición y estructura de la roca y el suelo, inclinación de las laderas, nivel freático)</td>
<td>• Mapeo/estudios topográficos de formaciones rocosas y sus características, geología de superficies (tipos de suelos); geomorfología (pendiente y aspecto de laderas); hidrología (especialmente aguas subterráneas y drenaje)</td>
</tr>
<tr>
<td></td>
<td>• Otros detonantes externos: sismicidad, precipitaciones</td>
<td>• Registros históricos de frecuencia, localización, características y efectos de episodios anteriores</td>
</tr>
<tr>
<td></td>
<td>• Vegetación y uso de la tierra (incluidas actividades de construcción, terraplenes, montículos hechos por el hombre, fosas de residuos, escombres, otros)</td>
<td>• Determinación de la probabilidad de fenómenos desencadenados como terremotos, ciclones y erupciones volcánicas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mapeo y estudios de la vegetación y el uso de la tierra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mapas de zonificación, de acuerdo con lo anterior</td>
</tr>
</tbody>
</table>

La información histórica sobre esos fenómenos climáticos y sus impactos negativos a nivel nacional, subnacional y local es útil para el estudio de la exposición. Las bases hemerográficas disponibles en cada país son fuentes de información a tener en cuenta, ya que los periódicos locales, regionales y nacionales informan sobre los eventos climáticos y sus impactos. Ese tipo de noticias proporciona información detallada sobre las características de los fenómenos (niveles de precipitación, temperaturas extremas, entre otros), sus impactos (zonas, número de víctimas y viviendas afectadas, costo económico de los daños, entre otros) y el tipo de medidas implementadas para atender la emergencia. Otra fuente de información relevante son las oficinas subnacionales o nacionales de protección civil. Por lo general, las oficinas locales de protección civil o de los gobiernos locales no cuentan con bases de datos sobre emergencias y desastres asociados a eventos climáticos; esa información la recolectan las oficinas subnacionales y nacionales. La información histórica sobre los impactos de eventos hidrometeorológicos y climáticos es un insumo importante en el estudio de la exposición y la sensibilidad de la población y el espacio urbano a la vulnerabilidad, pues permite identificar zonas críticas dentro del área urbana y facilita el desarrollo de una línea base para el proceso de adaptación.

La información sobre eventos hidrometeorológicos y climáticos para el análisis de la exposición debe completarse con información sobre los escenarios de cambio climático en la zona. En el capítulo II se mencionan diversas fuentes de información sobre esos escenarios y sus posibles consecuencias para las áreas urbanas. Cabe destacar como posible fuente de información las comunicaciones nacionales que cada país de la región elabora para la CMNUCC. Algunos países ya han preparado al menos dos comunicaciones, aunque otros han elaborado cuatro o hasta cinco informes. Cada comunicación presenta los escenarios del cambio climático para el país y sus posibles consecuencias para una serie de ámbitos (agricultura, salud, energía, asentamiento humano, entre otros). A pesar de que se trata de un análisis a nivel nacional, ofrece un marco general que ha de tenerse en cuenta en el análisis de la exposición como parte del estudio de la vulnerabilidad. El lector puede encontrar otras fuentes de información sobre los escenarios del cambio climático en el capítulo II.

Esos escenarios completan la información sobre eventos hidrometeorológicos y climáticos y permite ver en perspectiva cómo puede variar el clima durante las próximas décadas. Esa información es necesaria para planificar la adaptación, pero también es útil para la planificación urbana y el estudio de opciones de desarrollo local sostenible. Por ejemplo, los escenarios de cambio climático pueden ayudar a entender posibles variaciones de la precipitación extrema en la zona donde se encuentra una ciudad dada, un insumo importante para prevenir futuros problemas, ya presentes, de las inundaciones y las posibles alternativas de adaptación (incremento de la capacidad del drenaje pluvial, por ejemplo).
Tampoco hay que olvidar la importancia del rango de incertidumbre en los escenarios del cambio climático, mencionado en el capítulo II.

El estudio del segundo elemento de la vulnerabilidad (la sensibilidad) requiere una combinación de métodos analíticos. Es recomendable empezar por el estudio de las características del paisaje natural sobre la base de variables fisiográficas (topografía, hidrología, geología, geomorfología, vegetación, uso del suelo, edafología), que constituyen un buen punto de entrada al análisis de la sensibilidad. Conocer la manera en que el crecimiento urbano ha modificado el paisaje natural ayuda a entender la sensibilidad de las comunidades a los impactos negativos de eventos climáticos y las causas subyacentes de la vulnerabilidad. Por ejemplo, la alteración de los drenes naturales del terreno, provocada por construcciones o por la infraestructura, suele incrementar la sensibilidad a las inundaciones. Así pues, es conveniente identificar el tipo de urbanización que ha dado lugar a esos cambios (usos del suelo). En el contexto de ese análisis es importante prestar particular atención al caso del crecimiento urbano informal, común en las ciudades de América Latina, ya que con frecuencia lleva a la población de ingresos bajos a ocupar zonas de riesgo. También es recomendable manejar la información fisiográfica mediante un sistema de información geográfica (SIG).

La topografía es una variable importante para la construcción de modelos digitales del terreno y para entender las características fisiográficas del paisaje que inciden en problemas como las inundaciones o deslaves. La información disponible sobre la topografía a nivel urbano dispone de cartografía con curvas de nivel y diferentes niveles de detalle (generalmente con curvas de nivel cada cinco metros, si bien puede haber con curvas cada 20 metros). Cuanto más cercanas estén las curvas de nivel, mayor será el detalle de los modelos digitales del terreno.

Además de la topografía, otras variables importantes son la vegetación, la geología, la hidrología, la edafología y el uso del suelo. No es frecuente encontrar la cartografía de algunas de esas variables a nivel local, pero sí a nivel regional. Por ejemplo, en el caso de la edafología y la geología es frecuente encontrar información cartográfica a escalas que varían entre 1:50,000 y 1:250,000. En algunos casos, las instituciones de investigación locales, estatales o nacionales cuentan con información más detallada a nivel local para algunas ciudades. Es recomendable consultar con los centros nacionales de información estadística y geográfica y con los centros de investigación nacionales, estatales y locales que puedan tener este tipo de información. Cabe subrayar también que el estudio del paisaje natural permite entender la manera en que el crecimiento urbano lo ha modificado. Esas modificaciones suelen ser algunas de las causas subyacentes de la vulnerabilidad a los impactos negativos de eventos hidrometeorológicos y climáticos. Es el caso, por ejemplo, de la urbanización de zonas de recarga de los acuíferos que abastecen de agua a la ciudad, o de la alteración de los drenes naturales del terreno, que agrava el problema de las inundaciones.

La información sobre hidrología suele estar disponible a nivel de subcuenca a nivel urbano. Destacamos este caso por ser uno de los problemas más frecuentes en las áreas urbanas de América Latina. Las variables fisiográficas ayudan a desarrollar modelos de hidrología urbana que pueden completarse con mediciones de los escurrimientos en diversas partes de la ciudad. Estos modelos permiten utilizar mejor la información hidrometeorológica analizada en el capítulo II, sobre todo en el caso de las variables de precipitación extrema por hora y por día, y el modo en que se distribuye dentro del espacio urbano. Esta información es útil para definir posibles zonas de inundación en diversos escenarios de variabilidad y cambio climáticos. Los registros históricos de daños por inundación son un complemento útil de los estudios sobre exposición y sensibilidad. Una buena fuente de información sobre esos datos son los registros hemerográficos disponibles a nivel local, estatal o nacional, y los registros de declaratorias de desastres por parte de las oficinas de protección civil.

Para el caso de la información sociodemográfica y urbana existen diversas fuentes de información. En los países de la región, la información censal se encuentra disponible a nivel local y contiene información útil para el análisis de la sensibilidad como parte del estudio sobre la vulnerabilidad. Es importante
manejar la información censual a nivel intraurbano por medio de las unidades censales básicas y, de ser posible, a nivel de manzanas y viviendas.

Otras fuentes de información útil son los estudios sobre pobreza y marginación social a nivel local, relevantes en el análisis de la sensibilidad\footnote{Cabe recordar que, si bien no todos los pobres son vulnerables a los impactos negativos del cambio climático, con frecuencia son mucho más sensibles a esos impactos y están más expuestos a ellos.}. Es importante señalar que la pobreza es una condición dinámica y multidimensional que suele medirse de manera limitada teniendo en cuenta únicamente los ingresos. El enfoque multidimensional en el estudio de la pobreza y la marginación social proporciona mejor información para el análisis de la sensibilidad. Por ejemplo, el estudio de la marginación social a nivel municipal en México se realiza empleando siete variables además de los ingresos (CONAPO, 2012). Es importante tener presente el carácter dinámico de la pobreza y la marginación social, por lo que es conveniente actualizar periódicamente esa información.

La recopilación de información directa y de manera selectiva por parte del equipo de investigación de las comunidades es un mecanismo eficaz para completar la información sobre fuentes secundarias. La propia comunidad es una fuente valiosa de información para el estudio de los aspectos sociales de la sensibilidad incluidos en el estudio de la vulnerabilidad. Las guías metodológicas comentadas en la sección anterior ofrecen una gama de herramientas útiles para compilar esa información. En el cuadro IV.2 se presenta un resumen de las herramientas que esas guías sugieren con mayor frecuencia; no obstante, también es importante señalar al lector que esas publicaciones prestan poca atención a los aspectos fisiográficos mencionados más arriba y que ayudan a contar con una perspectiva integral de las causas subyacentes de la vulnerabilidad.

CUADRO IV.2

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Aplicación a la evaluación de la vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recopilación y examen de datos secundarios (informes oficiales, encuestas económicas, datos del censo, encuestas de hogares y otras estadísticas oficiales, investigación, sistemas de alerta temprana, informes de otros organismos, otros datos)\footnote{Cabe recordar que, si bien no todos los pobres son vulnerables a los impactos negativos del cambio climático, con frecuencia son mucho más sensibles a esos impactos y están más expuestos a ellos.}</td>
<td>Información contextual sobre diversas cuestiones, como características de la población, presiones y sucesos desestabilizadores externos (p. ej., tendencias de las precipitaciones y temperaturas), salud (morbilidad y mortalidad), efectos de desastres anteriores</td>
</tr>
<tr>
<td>Datos geoespaciales (p. ej., mapas, imágenes satelitales, mapas sociales, recorrido de transectos)</td>
<td>Determinación de características físicas y ambientales (incluidos fenómenos extremos), uso de la tierra, otros recursos e infraestructuras, localización de las poblaciones y los subgrupos vulnerables</td>
</tr>
<tr>
<td>Listas de verificación sobre cuestiones ambientales</td>
<td>Preguntas para obtener información sobre la situación ambiental y las preocupaciones en este ámbito, y para conocer la relación entre las personas vulnerables y su medio ambiente (p. ej., ¿qué importancia poseen los recursos ambientales para la resiliencia?, ¿cómo afectan a las comunidades las amenazas, la degradación y los cambios ambientales?)</td>
</tr>
<tr>
<td>Encuestas por muestreo</td>
<td>Datos cuantitativos sobre diferentes dimensiones de la vulnerabilidad (p. ej., educación, empleo, salud, estado nutricional, economías familiares)</td>
</tr>
<tr>
<td>Entrevistas (individuales, a familias, a grupos comunitarios, a informantes clave), grupos focalizados</td>
<td>Información, desde diferentes perspectivas (comunidades, otras partes locales interesadas, expertos externos), sobre los eventos y las tendencias causantes de la presión, la vulnerabilidad diferencial y la eficacia del comportamiento adaptativo</td>
</tr>
<tr>
<td>Estudios de caso de individuos y familias; historia oral</td>
<td>Datos sobre diferentes experiencias relacionadas con la vulnerabilidad y la capacidad para hacer frente a las amenazas ambientales y otros sucesos desestabilizadores</td>
</tr>
</tbody>
</table>
Cuadro IV.2 (conclusión)

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Aplicación a la evaluación de la vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronogramas</td>
<td>Histórico y características de eventos o tendencias a más largo plazo (p. ej., inundaciones, sequías, epidemias, tendencias y ciclos ambientales)</td>
</tr>
<tr>
<td>Calendarios estacionales</td>
<td>Descripción de eventos y tendencias estacionales, identificando el contexto de vulnerabilidad, los activos y las estrategias de subsistencia (p. ej., precipitaciones, nivel de alimentos en diferentes épocas del año, planes de siembra y cosecha de cultivos, precios de los alimentos, cambios en el estado de salud)</td>
</tr>
<tr>
<td>Ranking de riqueza y matriz de preferencias</td>
<td>Determinación de la vulnerabilidad de los activos de diferentes grupos ante presiones o sucesos desestabilizadores y estrategias para abordarla</td>
</tr>
<tr>
<td>Árbol de problemas</td>
<td>Detección de los problemas y sus causas, y determinación de posibles soluciones</td>
</tr>
<tr>
<td>Diagramas de Venn y otros métodos</td>
<td>Capital social, relación entre grupos, situación institucional y política</td>
</tr>
<tr>
<td>institucionales de valoración inicial/mapeo</td>
<td>Exploración de posibles resultados futuros y modelización de las interacciones socioambientales a lo largo del tiempo</td>
</tr>
</tbody>
</table>

Fuente: Charlotte Benson y John Twigg, *Herramientas para la integración de la reducción del riesgo de desastres*, Federación Internacional de Sociedades de la Cruz Roja y de la Media Luna Roja/Provention Consortium, 2007, págs.120 y 121.

a Puede incluir la utilización de índices de riesgo y vulnerabilidad nacionales.

El Programa de las Naciones Unidas para los Asentamientos Humanos (ONU-Hábitat, 2011a) publicó otra guía útil para desarrollar enfoques participativos en la adaptación al cambio climático. En la guía se detallan las actividades a seguir a la hora de elaborar un plan de adaptación y se incluye una evaluación de la vulnerabilidad (exposición, sensibilidad y capacidad adaptativa). En la siguiente sección se analizan con más detalle ésta y otras contribuciones de organizaciones internacionales al estudio de la vulnerabilidad y la adaptación al cambio climático.

Otras variables relevantes son las condiciones y las características de las viviendas, la infraestructura y los servicios urbanos. Dentro de la gama de variables urbanas útiles para el análisis de la sensibilidad, es importante incluir la localización y las características de los asentamientos informales. Un número considerable de esos asentamientos se localizan en zonas de riesgo (inundaciones, deslaves, hundimientos, otros). Actualizar y mejorar la información urbana en el análisis de la sensibilidad es útil no solo para estudiar la vulnerabilidad, ya que dicha información contribuye también a conocer mejor las características urbanas como un insumo relevante tanto en la planificación de la adaptación al cambio climático como en la prevención y reducción del riesgo de desastres asociados a eventos hidrometeorológicos y climáticos, en la planificación del propio desarrollo urbano y las opciones para un proceso de desarrollo sostenible a nivel local. Asimismo, es útil para elaborar medidas encaminadas a reducir la pobreza.

En ese sentido, también es relevante el análisis de la capacidad adaptativa como tercer componenente de la vulnerabilidad, ya que aporta elementos importantes para entender las oportunidades que contribuyen a reducir la vulnerabilidad y crear oportunidades para la adaptación. Buena parte de la información necesaria para el análisis de la capacidad adaptativa requiere, para su recopilación, un buen trabajo de campo. Por ello son recomendables los enfoques participativos que faciliten el acceso a información disponible solo a través de las diversas formas de trabajo de campo señaladas en el cuadro IV.2.

Desde un punto de vista social, la capacidad adaptativa depende de los bienes tangibles (ingresos económicos, ahorros, bienes materiales) e intangibles (relaciones sociales dentro y fuera de la comunidad, medios de vida, valores y percepciones) de los individuos, los hogares y las comunidades (Adger, 2006; Füssel, 2006; Few y otros, 2007). Para acceder a esa información es necesario realizar investigación participativa con los habitantes y las comunidades ubicados en zonas expuestas a eventos hidrometeorológicos y climáticos (por ejemplo, las zonas susceptibles de sufrir inundaciones o
deslaves identificadas en el estudio de la exposición y la sensibilidad, así como los registros históricos de estos problemas). Desde un punto de vista institucional, la capacidad adaptativa requiere tener en cuenta la capacidad de las organizaciones locales (públicas, privadas, científicas y sociales) para contribuir a reducir la vulnerabilidad y trabajar conjuntamente en un proceso de adaptación, así como sus recursos materiales, técnicos, financieros y humanos, particularmente en el sector público local, para prevenir y responder a emergencias vinculadas a los impactos climáticos y ordenar el crecimiento urbano.

Parte de la importancia del análisis de la capacidad adaptativa radica en que proporciona información necesaria para fortalecer la capacidad de acción de los individuos y comunidades con miras a reducir su vulnerabilidad, crear oportunidades de adaptación a la variabilidad y el cambio climáticos, contribuir a la prevención y reducción del riesgo de desastres, e incluso para mejorar el crecimiento urbano de sus comunidades y crear oportunidades de desarrollo sostenible. Es importante destacar el reciente acento que diversas organizaciones internacionales han puesto en el fortalecimiento de esa participación ciudadana en el estudio y la planificación necesarias para diseñar estrategias que atiendan a los impactos del clima en la sociedad, en particular en países de ingresos bajo y medianos, como es el caso de América Latina (FICR, 2006 y 2008; USAID, 2007; OCDE, 2009; PNUD, 2005, 2010a y 2010b; ONU-Hábitat, 2011a; Banco Mundial, 2011). Esos trabajos dejan de considerar la población como víctima pasiva de los impactos y las reconocen como un grupo de agentes sociales con capacidad de acción para defenderse contra los impactos negativos de los fenómenos climáticos y del desarrollo local. Conocer y fortalecer esa capacidad de acción no es sencillo, pero aporta información muy útil para transformar el crecimiento urbano y reducir los problemas de las ciudades de América Latina.

Algunos autores subrayan que este enfoque es particularmente útil para estudiar la vulnerabilidad en zonas de ingresos bajos y en asentamientos informales, que con frecuencia ocupan zonas de riesgo en caso de producirse eventos climáticos (Moser y Satterthwaite, 2008; Banco Mundial, 2010b; Crane, 2013), y destacan la necesidad de vincularla la reducción de la vulnerabilidad a los esfuerzos para reducir la pobreza y mejorar los modos de vida de los habitantes de esas zonas. Un método útil a la hora de definir políticas y medidas eficaces para alcanzar ese objetivo consiste en profundizar en el conocimiento de los bienes tangibles e intangibles de los individuos y las comunidades para la elaboración de propuestas de abajo arriba en los planes de adaptación al cambio climático (Moser y Satterthwaite, 2008; Banco Mundial, 2010b; Crane, 2013). Dichas propuestas contribuyen a fortalecer la capacidad de agencia de los actores urbanos en los planes de adaptación, y los transforman en agentes dinámicos del proceso. Son, además, un contrapeso a las propuestas de arriba abajo empleadas tradicionalmente en la planificación urbana.

Otras organizaciones y autores sugieren que se utilice el concepto analítico de medios de vida sostenibles (sustainable livelihoods) como una herramienta analítica multidimensional que contribuye a vincular la capacidad adaptativa a los planes de desarrollo local (CARE, 2009). El lector podrá ver que se trata de un enfoque empleado en las guías metodológicas para el estudio de la vulnerabilidad y la capacidad desde la perspectiva de las comunidades, tal como se ha señalado en la primera sección de este capítulo (Benson y Twigg, 2007; FICR, 2008; ISSD, 2012; Turnbull y Turvill, 2012; Turnbull, Sterrett y Hilleboe, 2013; USAID, 2007).

El estudio de la vulnerabilidad en función de sus tres elementos permite diseñar estrategias y medidas que trascienden los esfuerzos para reducir la vulnerabilidad y crear adaptación al cambio climático, y que a la vez son un insumo importante para la planificación del desarrollo local. En el cuadro IV.3 se presenta un ejemplo sugerido por ONU-Hábitat (2010) del tipo de datos e información que puede emplearse para estudiar la vulnerabilidad con este enfoque. No se pretende presentar en el cuadro una perspectiva exhaustiva del tipo de datos que cabe incluir en este tipo de estudio, y cada ciudad puede adaptarlo a sus condiciones particulares. Asimismo, la información que se ha de tener en cuenta puede variar según esas condiciones. No obstante, en el cuadro se ofrece una referencia útil que ha de tomarse en cuenta en las etapas iniciales del diseño de los planes de adaptación.
CUADRO IV.3
LISTA DE DATOS QUE SE HAN DE TENER EN CUENTA EN EL ESTUDIO DE LA VULNERABILIDAD

<table>
<thead>
<tr>
<th>Factor de evaluación</th>
<th>Datos clave necesarios</th>
<th>Propósito</th>
<th>Posible fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición al cambio climático (actual y futura)</td>
<td>a) Datos climáticos (p. ej., ciclones, sequías, inundaciones)</td>
<td>• Mostrar tendencias e indicar, en lo posible cómo se manifiesta localmente el cambio climático (CC)</td>
<td>• Observaciones a nivel nacional/local</td>
</tr>
<tr>
<td></td>
<td>b) Escenarios/ proyecciones climáticas (local/nacional/global)</td>
<td>• Mostrar lo más adecuadamente posible lo que cabe esperar a nivel local para los próximos 10, 20, 30, 50 años o para final de siglo</td>
<td>• Proyecciones globales del IPCC, proyecciones regionales; comunicaciones nacionales de CC</td>
</tr>
<tr>
<td></td>
<td>c) Informes de impactos de desastres anteriores</td>
<td>• Analizar la exposición a las amenazas de los efectos biofísicos del cambio climático</td>
<td>• Informes de las ciudades</td>
</tr>
<tr>
<td>Sensibilidad al cambio climático</td>
<td>a) Mapa de riesgo</td>
<td>• Identificar efectos biofísicos del CC (p. ej., sequia, inundaciones, deslizamientos de tierra, ciclones, otros)</td>
<td>• Discusiones de grupos focales con la comunidad</td>
</tr>
<tr>
<td></td>
<td>b) Perfil socioeconómico</td>
<td>• Identificar la población que se verá afectada dadas sus condiciones actuales y futuras</td>
<td>• Comunicados oficiales a nivel ciudad/país</td>
</tr>
<tr>
<td>Capacidad adaptativa</td>
<td>a) Perfil socioeconómico</td>
<td>• Identificar los umbrales de las personas en situación de riesgo</td>
<td>• Datos de la ciudad/ resultados de encuestas</td>
</tr>
<tr>
<td></td>
<td>b) Características físicas clave</td>
<td>• Presentar recursos y condiciones actuales</td>
<td>• Datos de la ciudad</td>
</tr>
<tr>
<td></td>
<td>c) Plan de uso del suelo</td>
<td>• Presentar información espacial para comparar entre los mapas de amenazas y las áreas de riesgo proyectadas</td>
<td>• Plan integral de uso del suelo urbano</td>
</tr>
<tr>
<td></td>
<td>d) Actividades económicas locales</td>
<td>• Presentar las actividades económicas que podrían estar en riesgo</td>
<td>• Discusiones de grupos focales con las comunidades sobre la capacidad de agencia</td>
</tr>
<tr>
<td></td>
<td>e) Estrategia de desarrollo local</td>
<td>• Proporcionar información sobre la relevancia de riesgo por áreas/sectores/resursos con respecto a las prioridades de la ciudad</td>
<td>• Datos de la ciudad/informes sobre las discusiones con grupos focales</td>
</tr>
<tr>
<td></td>
<td>f) Programas de inversión de la ciudad/Flujo anual de recursos</td>
<td>• Identificar disponibilidad de recursos para apoyar las respuestas al CC</td>
<td>• Datos de la ciudad</td>
</tr>
<tr>
<td></td>
<td>g) Copias del plan/programa local de reducción de riesgo de desastres</td>
<td>• Presentar las medidas que se implementan actualmente y, de ser posible, determinar la capacidad existente</td>
<td>• Datos de la ciudad y de la comunidad</td>
</tr>
</tbody>
</table>

C. De la vulnerabilidad a la adaptación

El estudio de la vulnerabilidad analizado anteriormente permite no solo identificar los individuos y las comunidades expuestas a eventos climáticos, sino también averiguar por qué son vulnerables. Se trata de un insumo esencial para diseñar medidas de prevención de desastres que a su vez contribuyan a diseñar medidas de desarrollo urbano. Asimismo, es una forma eficaz de utilizar los recursos disponibles para adaptar las sociedades urbanas de la región a las condiciones climáticas actuales y futuras, ya que permite vincular mejor las necesidades y oportunidades de desarrollo urbano actual y tener en cuenta las necesidades y oportunidades de escenarios futuros del crecimiento urbano, algo particularmente importante en el caso de las áreas urbanas. La vida útil de las infraestructuras y las construcciones urbanas es de aproximadamente 70 años en término medio. Es muy probable que los espacios urbanos que se construyen ahora operen en condiciones climáticas diferentes durante las próximas décadas. Tener en cuenta esos cambios ayuda a prolongar la vida útil de las obras, mejorar su eficacia y reducir la necesidad de nuevas obras de infraestructura en el futuro. Un beneficio adicional de este enfoque radica en que fortalece la planificación urbana con perspectivas a mediano y largo plazo.

La importancia del estudio de la vulnerabilidad la reconocen hoy diversas organizaciones internacionales que la identifican como un buen punto de entrada en el diseño de estrategias, políticas y
medidas de adaptación (Adger, Arnell y Tompkins, 2005; PNUD, 2005; Adger y otros, 2009a y 2009b; Füssel, 2009; ONU-Hábitat, 2011a; Banco Mundial, 2012). Así y todo, es importante tener en cuenta que reducir la vulnerabilidad no se traduce necesariamente en medidas de adaptación eficaces. Este es un aspecto sobre el que parte de la bibliografía internacional ha empezado a llamar la atención (Adger y Barnett, 2009; Hinkel y otros, 2009; Hofmann, Hinkel y Wrobel, 2011). No está de más recordar que la vulnerabilidad es una condición dinámica y específica ante un evento determinado, y que requiere actualizaciones y adecuaciones periódicas. La adaptación es un proceso inmerso en el desarrollo urbano que orienta el crecimiento local con perspectivas a corto, mediano y largo plazo y busca una gestión eficaz de los recursos disponibles para prevenir y reducir los riesgos de los impactos negativos y aprovechar los impactos positivos del cambio climático actual y futuro. Este enfoque brinda la oportunidad de fortalecer las capacidades locales para crear y desarrollar el proceso de adaptación al cambio climático y facilita también vincular la adaptación a las necesidades y oportunidades para un desarrollo urbano sostenible (Hulme y otros, 2009; Hofmann, Hinkel y Wrobel, 2011).

Dos limitaciones de la vulnerabilidad para el diseño de la adaptación son: su enfoque en la dimensión negativa de los impactos y su carácter específico para un evento climático determinado. Dadas las condiciones actuales de las áreas urbanas de América Latina, la atención a esos impactos negativos es impostergable, pero la adaptación al cambio climático ha de tener en cuenta una visión acumulativa de esos impactos y no solo una perspectiva fragmentada. Asimismo, es importante que la adaptación considere no solo los impactos negativos del cambio climático, sino también los positivos.

En la introducción de este capítulo se mencionan varios enfoques posibles para el diseño de estrategias de adaptación: enfoque centrado en los impactos biofísicos; enfoque centrado en la vulnerabilidad a los amenazas naturales; enfoque centrado en el estudio de la vulnerabilidad social; enfoque centrado en el estudio de la resiliencia, y, por último, el centrado en la definición de políticas de adaptación una vez determinados los impactos y riesgos futuros del cambio climático. También se señala que en la bibliografía internacional es frecuente encontrar la combinación de varios de los enfoques mencionados, en particular la reducción de riesgos de desastres empleada en los que se centran en los impactos biofísicos y en la vulnerabilidad a las amenazas naturales, y en los que se centran en la vulnerabilidad social y la resiliencia. Es importante distinguir entre las medidas que solo ayudan a sobreponerse a los impactos del clima de las que contribuyen a adaptarse a sus impactos. Por tal motivo, en el cuadro IV.4 se explica la diferencia entre los dos tipos de medidas sobre la base de la contribución de CARE International (CARE, 2009 y 2012). Distinguir entre estos dos conceptos contribuye a diseñar las medidas de adaptación y a vincularlas con el desarrollo local.

CUADRO IV.4
¿CUÁL ES LA DIFERENCIA ENTRE SOBREPONERSE Y ADAPTARSE A UN EVENTO CLIMÁTICO?

<table>
<thead>
<tr>
<th>Sobreponerse</th>
<th>Adaptación</th>
</tr>
</thead>
<tbody>
<tr>
<td>A corto plazo e inmediato</td>
<td>Orientada hacia la seguridad a largo plazo de los medios de vida</td>
</tr>
<tr>
<td>Orientado hacia la supervivencia</td>
<td>Proceso continuo</td>
</tr>
<tr>
<td>No es continuo</td>
<td>Resultados sostenidos</td>
</tr>
<tr>
<td>Motivado por una crisis, reactivo</td>
<td>Utiliza los recursos de manera eficiente y sostenible</td>
</tr>
<tr>
<td>A menudo degradado los recursos</td>
<td>Implica planificación</td>
</tr>
<tr>
<td>Motivado por falta de alternativas</td>
<td>Combina conocimiento y estrategias antiguas y nuevas</td>
</tr>
<tr>
<td>Se concentra en buscar alternativas</td>
<td></td>
</tr>
</tbody>
</table>

El Programa de las Naciones Unidas para el Desarrollo (NUD) ha realizado durante la última década aportaciones útiles al tema de la adaptación al cambio climático. Varias de sus publicaciones subrayan que tener en cuenta los diversos horizontes temporales en las medidas de adaptación al cambio climático contribuye a diseñar y desarrollar estrategias más eficaces (NUD, 2005 y 2010b). Una de las concepciones equivocadas de la adaptación al cambio climático consiste en pensar que se trata de un campo que incluye medidas a mediano y largo plazo cuando en realidad se trata de un proceso con medidas a corto, mediano y largo plazo. Las medidas a corto plazo contribuyen a evitar problemas a mediano y largo plazo. Esto es particularmente importante en el caso de las áreas urbanas, dada la larga vida útil del espacio urbano (ONU-Hábitat, 2011a; EIRD, 2012; Sánchez-Rodríguez 2012; Banco Mundial, 2012).

Con el cuadro IV.5 se pretende ayudar al lector a tener una idea más clara del continuum de acciones que forman parte del proceso de adaptación a corto, mediano y largo plazo. Por ejemplo, en la parte superior del cuadro se señala que las respuestas de adaptación a las amenazas actuales pueden ser planificadas o reactivas. Sin embargo, hasta ahora la tendencia ha sido la adaptación reactiva. Vale la pena recordar que en la primera sección de este capítulo se subraya la poca atención que se ha prestado hasta ahora a la prevención del riesgo de desastres o a la reducción de la vulnerabilidad. La adaptación, como la vulnerabilidad y el desarrollo, es contextual, y la información que se presenta en los cuadros puede variar según las condiciones y características de cada ciudad.

<table>
<thead>
<tr>
<th>CUADRO IV.5</th>
<th>TIPOS DE AMENAZAS EN CURSO Y MEDIDAS DE ADAPTACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principales tipos de respuestas de adaptación</td>
<td>Amenazas actuales conocidas</td>
</tr>
<tr>
<td>Ejemplo de amenazas</td>
<td>Inundaciones, sequías, vendavales, olas de calor, olas de frío, precipitaciones extremas, tormentas de granizo, tormentas de polvo</td>
</tr>
<tr>
<td>¿Quién interviene?</td>
<td>Gobierno, organismos de planificación, comunidades, individuos</td>
</tr>
<tr>
<td>Medidas para mejorar la capacidad de adaptación</td>
<td>Establecer redes de monitoreo</td>
</tr>
<tr>
<td></td>
<td>Evaluar datos históricos y estudios de caso (identificar adaptaciones exitosas y no exitosas)</td>
</tr>
<tr>
<td></td>
<td>Difundir información sobre adaptaciones exitosas</td>
</tr>
<tr>
<td></td>
<td>Desarrollar la capacidad de predicción a corto plazo</td>
</tr>
<tr>
<td></td>
<td>Mejorar el acceso a créditos y seguros</td>
</tr>
<tr>
<td></td>
<td>Fomentar la adaptación autónoma</td>
</tr>
<tr>
<td></td>
<td>Evitar la mala adaptación a través de la regulación</td>
</tr>
<tr>
<td></td>
<td>Hacer cumplir las normas ambientales</td>
</tr>
<tr>
<td></td>
<td>Evaluar necesidades de adaptación (incluidas las necesidades tecnológicas) a través de grupos de interés</td>
</tr>
</tbody>
</table>

En la preparación de este capítulo se ha prestado particular atención a las publicaciones que proponen lineamientos, métodos y enfoques prácticos para planificar la adaptación y su puesta en práctica. Nos parece relevante destacar las siguientes contribuciones, que pueden ayudar al lector en la consulta de esas publicaciones:
• El Programa de las Naciones Unidas para el Desarrollo resalta el estudio de la vulnerabilidad como un insumo importante para el diseño de estrategias y acciones de adaptación (PNUD, 2005). El documento subraya la participación de la sociedad en el diseño y puesta en práctica de las políticas de adaptación y la importancia de crear capacidades como un elemento central en el desarrollo de respuestas al cambio climático. En una publicación posterior, el PNUD sugiere gestionar los retos que el cambio climático plantea al desarrollo con una perspectiva de planificación a largo plazo (PNUD, 2010b). El PNUD reconoce que las reacciones a corto y mediano plazo, sin prestar atención a los impactos y las consecuencias que puedan tener a largo plazo, resultarán en decisiones de inversión locales poco rentables y con un costo que podría exceder el costo directo del cambio climático. Además, el PNUD sugiere que el carácter multidimensional de la adaptación se integre en la toma de decisiones de política de inversión, y destaca el papel coordinador del sector público en el desarrollo del proceso de adaptación. El PNUD apoya la creación de planes de adaptación al cambio climático con un enfoque territorial (PNUD, 2012).

• Una publicación de la Organización para la Cooperación y el Desarrollo Económicos (OCDE, 2008) coincide en la necesidad de facilitar la participación ciudadana en el diseño de las políticas de adaptación. La OCDE subraya también la importancia de integrar la adaptación en las estrategias y políticas de desarrollo local a través de la planificación (OCDE, 2009). Otros estudios internacionales destacan el mismo aspecto (FICR, 2009; OXFAM, 2012; PNUD, 2010b; ONU-Hábitat, 2011d; CARE, 2012; ISSD, 2012; EIRD, 2012; Banco Mundial, 2012).

• La Agencia Internacional de los Estados Unidos para el Desarrollo (USAID, 2007) tiene un enfoque dirigido a proyectos y medidas de adaptación y también tiene en cuenta el desarrollo de un proceso participativo, poniendo atención al tipo de participantes, el diálogo entre ellos y la forma en que se establece ese proceso. Empleando cuatro casos de estudio, se identifican medidas para la construcción de infraestructuras y la creación de capacidades, de políticas y de nuevas prácticas. Los criterios de evaluación de las propuestas serían: efectividad, costo, posibilidad implementación, factibilidad social y cultural, adecuación al clima actual, rapidez con que puede ponerse en práctica e interacción con otras políticas estatales.

• Por su parte, el Banco Mundial presta atención a este tema en varias publicaciones (Banco Mundial, 2010a, 2010b, 2011a, 2011b y 2012). En ellas se hace hincapié en los siguientes aspectos: protección de la población vulnerable de bajos ingresos contra los desastres vinculados a eventos hidrometeorológicos y climáticos; importancia de que los esfuerzos para reducir el riesgo de desastres tomen en cuenta la adaptación al cambio climático creado sinergias a corto, mediano y largo plazo; necesidad de considerar a la adaptación como un ciclo continuo y proactivo de preparación, respuesta y revisión; vínculo entre la reducción del riesgo de desastres y la adaptación al cambio climático y los empeños para reducir la pobreza y la creación de oportunidades de desarrollo a nivel local; favorecer enfoques participativos en las estrategias, políticas y planes de reducción del riesgo de desastres hidrometeorológicos y de adaptación al cambio climático.

Una publicación reciente pone el acento en la importancia de desarrollar resiliencia al cambio climático y al riesgo de desastres a partir de estrategias y de un programa que los atienda de manera coordinada a partir de los siguientes nueve puntos (Turnbull, Sterrett y Hilleboe, 2013): 1) aumentar el conocimiento del contexto de las amenazas y el cambio climático; 2) aumentar el conocimiento de la exposición, la vulnerabilidad y la capacidad adaptativa, incluido un mejor conocimiento de las causas de la exposición y la vulnerabilidad como resultados de un proceso participativo; 3) fortalecer la participación
y la acción de la población en riesgo y reconocer que la sostenibilidad de las estrategias para aumentar la resiliencia y crear adaptación depende de que la población se apropi de ellas; 4) promover la participación y el cambio sistémico mediante la participación de todos los sectores de la sociedad y el gobierno, y situar la resiliencia y la adaptación en el centro de la planificación del desarrollo; 5) promover las sinergias entre varios niveles, en particular entre diversos órdenes de gobierno mediante un enfoque coherente y coordinado; 6) basarse en diversas fuentes de conocimiento, completando los locales y tradicionales con las investigaciones científicas; 7) fomentar flexibilidad y capacidades de respuesta; 8) trabajar con diferentes escalas de tiempo para poder combinar la atención a los riesgos actuales con posibles impactos en escenarios futuros; 9) no causar daño incorporando una evaluación de los posibles impactos negativos de las estrategias y los programas de adaptación y de reducción de los riesgos de desastres.

Los ejemplos arriba mencionados ilustran la variedad de contribuciones al estudio de la adaptación al cambio climático y son una contribución a las sugerencias que se presentan en la siguiente sección.

Otro insumo que tomamos en cuenta son las lecciones que se pueden aprender de las primeras ciudades que han elaborado planes de adaptación al cambio climático. A pesar de que la gran mayoría son estrategias recientes, su estudio permite algunas reflexiones útiles:

- El primer elemento es el hecho de que las ciudades con mayores avances cuentan con personal dedicado al desarrollo de programas de adaptación y han asignado fondos para desarrollar un sistema de acciones y herramientas para ponerlas en práctica (Corfee-Morlot y otros, 2010; Carmin, Anguelovski y Roberts, 2012).

- El liderazgo político de los alcaldes ha sido otro aspecto importante del desarrollo de planes de adaptación. Ese liderazgo es importante a la hora de llamar a la creación del proceso de adaptación y para fortalecer la coordinación entre niveles de gobierno (subnacional y nacional), sectores, oficinas del gobierno local y actores participantes en el proceso (Corfee-Morlot y otros, 2010; Foster, Winkelmann y. Lowe, 2011). Algunas ciudades han creado unidades especiales encargadas de la coordinación que informan directamente a la oficina del alcalde, lo que contribuye a mejorar la coordinación horizontal entre sectores (Rosenzweig y Solecki, 2010; Carmin, Anguelovski y Roberts 2012, Larsen y otros, 2012). Varias ciudades han diseñado una estrategia de difusión y comunicación con diversos productos: preparación y distribución de boletines informativos sobre el proceso del cambio climático, las áreas de posibles impactos y las estrategias de adaptación; formas de comunicación visuales, como mapas, fotos e ilustraciones que contribuyen a una mejor comunicación; talleres y conferencias e incluso representaciones teatrales, vídeos y otros medios de comunicación visual. La intención es lograr un mayor conocimiento, participación y apoyo a la adaptación local (Few, Brown y Tompkins, 2007; Obermaier y otros, 2009; PNUD, 2010a; UNISDR/ITC/PNUD, 2010; EIRD, 2012, Turnbull, Sterrett y Hilleboe, 2013). Algunas ciudades no han esperado a tener una estrategia de adaptación completa para empezar su proceso de adaptación y han elaborado un programa de trabajo para asegurar que ese proceso sea continuo (PNUD, 2010a).

- Un estudio reciente de la adaptación en seis ciudades de varios países señaló los siguientes obstáculos: escaso conocimiento entre los habitantes sobre la variedad de impactos del cambio climático; incertidumbre acerca de la temporalidad, frecuencia y extensión de esos impactos; la práctica de tomar decisiones importantes concernientes a la infraestructura urbana basándose en condiciones climáticas del pasado (tormentas, nevadas, temperaturas extremas, otras); enfoques que dan prioridad a los costos de la atención a eventos climáticos a corto plazo en lugar de considerar los impactos y sus costos sociales, ambientales y económicos de la no adaptación a corto, mediano y largo plazo; dificultades para atraer
la atención y el compromiso de los líderes políticos; problemas para coordinar las medidas entre los departamentos del gobierno local y entre niveles de gobierno (nacional, subnacional y local); recursos financieros inadecuados en los gobiernos de los centros urbanos (Ligeti y otros, 2007).

Otras experiencias internacionales de adaptación contribuyen a diseñar y poner en práctica este tipo de estrategias. Es relevante incluirlas en esta sección dado que son aspectos no considerados en las guías metodológicas. Las lecciones aprendidas ayudan a evitar errores y a conocer mejor la gestión de un tema complejo como la adaptación.

- Es recomendable integrar las tendencias del cambio climático con los resultados del diagnóstico de la vulnerabilidad al riesgo de desastres asociados a la variabilidad climática actual para diseñar estrategias eficaces a corto, mediano y largo plazo. Así se contribuye a fortalecer la capacidad de respuesta y preparación para reducir riesgos y promover una adaptación efectiva. Es importante integrar las preocupaciones inmediatas por los impactos del clima y las causas de la vulnerabilidad con las estrategias a largo plazo orientadas a atender los riesgos futuros. Esa integración puede llevarse a cabo implementado medidas para prevenir el riesgo de desastres hidrometeorológicos y climáticos, integradas en procurándolas medidas encaminadas a reducir la vulnerabilidad al cambio climático. Este enfoque facilita vincular esas acciones a los esfuerzos para reducir la pobreza, mejorar los modos de vida de la población, orientar mejor el crecimiento urbano y crear oportunidades para el desarrollo sostenible.

- Distinguir entre las actividades que deben realizarse independientemente del cambio climático (atención a las presiones del desarrollo urbano) y aquellas respuestas que son necesarias debido a los riesgos y oportunidades asociadas al cambio climático. Esta distinción es importante para articular el valor agregado de las respuestas al cambio climático y resaltar que la prevención y la planificación son más eficaces y de menor costo que una mera respuesta a los impactos del cambio climático (FCM, 2009; PNUD, 2010a; ONU-Hábitat, 2011a; Dodman, 2012; Banco Mundial, 2012). Este factor subraya la necesidad de contar con horizontes de planificación a corto, mediano y largo plazo (Blanco y Alberti, 2009; Sánchez-Rodríguez, 2009; Hallegatte y Corfee-Morlot, 2011; Matthews, 2012; Banco Mundial, 2012). La planificación urbana en un número significativo de ciudades de la región se lleva a cabo con horizontes a corto plazo dentro de la temporalidad de sus administraciones políticas (generalmente, de tres a cuatro años). La planificación a corto plazo es uno de los obstáculos para la formulación de opciones de desarrollo sostenible, incluidas la respuesta a las necesidades urbanas a mediano y largo plazo y los riesgos asociados a la variabilidad y el cambio climáticos.

Priorizar y fortalecer las capacidades existentes entre las autoridades locales, las organizaciones de la sociedad civil y el sector privado para crear las bases de una gestión eficaz de los riesgos asociados al clima, incluido el proceso de adaptación al cambio climático. Es recomendable tener en cuenta las capacidades que ayudan a incluir las condiciones y necesidades para responder al cambio climático y mejorar y fortalecer las posibilidades de desarrollo local. La creación y el fortalecimiento de capacidades es relevante para diversos grupos de actores que participan en la planificación de la adaptación. En el caso de los actores públicos (tomadores de decisiones, planificadores urbanos y funcionarios de otras oficinas sectoriales), de los actores sociales y los privados, es esencial crear capacidades para entender y realizar el trabajo interdisciplinario y transdisciplinario necesario para gestionar la adaptación. Es importante incluir entre esas capacidades las herramientas que permiten tratar la incertidumbre inherente al cambio climático; tomar en cuenta los servicios ecosistémicos como parte de los recursos para planificar la adaptación; evaluar desde un punto de vista económico, social y ambiental la adaptación y las habilidades para comunicar y difundir la adaptación. La creación de estas capacidades debe planearse como parte
del proceso de adaptación. El apoyo para desarrollarse esas capacidades puede obtenerse a través de: las universidades y centros de investigación locales y nacionales; las agencias multilaterales de desarrollo y los organismos de cooperación internacional y otras organizaciones internacionales. Establecer esa colaboración suele requerir acuerdos formales entre los gobiernos subnacionales y/o nacionales. El caso de Cartagena de Indias en Colombia (Climate and Development Knowledge Network), Montevideo en el Uruguay, Tegucigalpa en Honduras (PNUD), Esmeraldas en el Ecuador (ONU-HABITAT), Santiago (la CEPAL, la Universidad de Chile, la Pontificia Universidad Católica de Chile, el Centro Helmholtz de Investigaciones Ambientales- UFZ, Alemania), México, D.F. (Universidad Nacional Autónoma de México), son ejemplos de ciudades con planes de adaptación que contaron con el apoyo de diversas organizaciones nacionales o internacionales.

- Otro aspecto relevante que cabe tener en cuenta es el desarrollo de los mecanismos y recursos necesarios para favorecer la elaboración de planes inclusivos en las estrategias de adaptación y promover la integración de la adaptación al cambio climático en la planificación del desarrollo local.

- Es importante gestionar con las autoridades subnacionales y nacionales el flujo hacia las ciudades de los recursos financieros y técnicos necesarios para planificar la adaptación. De igual forma, es relevante negociar mecanismos para lograr una mayor eficiencia en las relaciones multinivel entre los diversos órdenes de gobierno con vistas a apoyar la adaptación. En muchos casos puede ser de utilidad poner de manifiesto, en esas negociaciones, la necesidad de tener un enfoque que integre la prevención y la reducción del riesgo de desastres vinculados al clima actual con la planificación de la adaptación al cambio climático. Dicha integración contribuiría a reducir y evitar la dispersión de recursos para atender agendas similares a nivel local en beneficio de la prevención de desastres y el fomento de la adaptación. En ese sentido, es importante tener en cuenta las oportunidades que se abren con el impacto de eventos climáticos que provocan situaciones de emergencia y desastres climáticos en las ciudades. Después de esos desastres, la sensibilidad de los gobiernos subnacionales y nacionales para invertir en la prevención de esos problemas es mayor.

- La comunicación y la difusión de los impactos de la variabilidad y el cambio climáticos y las estrategias para reducir la vulnerabilidad y fomentar la adaptación a corto y largo plazo son elementos importantes para favorecer la participación ciudadana y obtener apoyos para su desarrollo. Es útil también destacar, en esas campañas de comunicación, el vínculo entre las medidas de adaptación y la atención a problemas urbanos actuales. Varias ciudades han empleado con éxito boletines impresos y cápsulas informativas en medios de comunicación (radio, televisión y prensa impresa) en un esfuerzo por lograr una mayor difusión. En esas acciones se destaca con frecuencia el papel que el ciudadano puede tener en el proceso de adaptación y los beneficios que puede esperar de él. Algunas ciudades han prestado especial atención a realizar esas campañas en las comunidades más expuestas y sensibles a ser afectadas por eventos climáticos actuales y futuros, con frecuencia en asentamientos informales.

- La implementación es un elemento crítico del proceso de adaptación. Debe considerarse como un proceso adicional a la planificación, y con diversas etapas según las condiciones y los recursos disponibles a nivel local. Un enfoque útil para llevar a cabo la implementación es considerarla un proceso de aprendizaje que permite gestionarla conforme se van asimilando y analizando las lecciones aprendidas durante el proceso (Glaas y otros, 2010: Hinkel y otros, 2009; Hofmann, Hinkel y Wrobel, 2011). La importancia del aprendizaje en la planificación e implementación de la adaptación está asociada a la importancia del
aprendizaje en la planificación del desarrollo urbano (Holden, 2008), y debe considerarse otro de los elementos en común entre esos procesos que facilitan la integración de la adaptación en el desarrollo local.

- Un punto central de la implementación de la adaptación es la consecución de una amplia participación ciudadana. Por ello se ha hecho hincapié en el uso de planes inclusivos y participativos en su diseño e implementación. Las autoridades locales desempeñan un papel muy importante a la hora de promover, facilitar y articular esa participación ciudadana. Las guías metodológicas para la reducción del riesgo de desastres y la adaptación al cambio climático, mencionadas más arriba, proporcionan una gama de herramientas para llevar a cabo la adaptación a través de procesos inclusivos.

- Asimismo, es importante tener en cuenta las capacidades necesarias para llevar cabo la implementación de la adaptación, así como los ajustes que se deben realizar en la estructura y la cultura operacional de las oficinas de los gobiernos locales, por ejemplo, la dificultad de desarrollar enfoques operativos transversales para planificar la adaptación. La bibliografía internacional da cuenta de esos obstáculos para la implementación de la adaptación en algunas ciudades. Por ejemplo, en ciudades de Australia, Dinamarca, Suecia, los Estados Unidos, África del Sur y México, entre otras, se documentan los obstáculos que impiden desarrollar enfoques operativos multidimensionales durante la planificación de la adaptación (Wilson 2006; Storbjork, 2007; Roberts, 2010; Doran, 2011; Rico, 2011; MAV, 2011; Mozumder, Flugman y Randhir, 2011; Larsen y otros, 2012; Vammen Larsen, Kornøv y Wejs, 2012). Esas agendas multidimensionales requieren la coordinación y la colaboración transversal de varias oficinas del gobierno local y la coordinación con otros niveles de gobierno (Corice-Morlot y otros, 2009; Glaas y otros, 2010; Preston y otros, 2011; Carmin, Anguelovski y Roberts, 2012; Gero, Kuruppu y Mukheibir, 2012; Matthews, 2012). La estructura de los gobiernos locales se basa en oficinas dedicadas a trabajar de manera independiente en cada sector, y no tienen experiencia en la integración de medidas a través de una agenda transversal. Las oficinas del gobierno local tampoco cuentan, por lo general, con experiencia en el trabajo transdisciplinario que requieren los enfoques participativos mencionados más arriba. La formación de esas capacidades son importantes para el desarrollo del proceso de adaptación.

- Planificar la implantación de la adaptación por etapas contribuye a reducir la cantidad de recursos necesarios para poner en marcha el proceso de adaptación.

- El último aspecto es el seguimiento y la evaluación de la adaptación. A pesar de que forman parte de los esquemas de planificación urbana, pocas ciudades implementan el seguimiento y la evaluación, dos herramientas que ayudan a identificar problemas, obstáculos y oportunidades en las medidas que se aplican a lo largo de la planificación por la que se orienta el crecimiento de la ciudad. El seguimiento y la evaluación son particularmente importantes dadas la incertidumbres sobre los impactos de la variabilidad y el cambio climático y los continuos avances en su estudio, que mejoran la capacidad de acción para reducir la vulnerabilidad a desastres climáticos y mejorar la adaptación al cambio climático. A lo largo de este capítulo se ha subrayado la complejidad de la adaptación dados su carácter multidimensional, las incertidumbres inherentes al cambio climático, la necesidad de coordinación entre los distintos niveles de gobierno y la falta de experiencia de las sociedades para hacer frente a este tipo de problemas. Por ello, el seguimiento y la evaluación de las actividades de adaptación son dos instrumentos fundamentales en el aprendizaje del proceso de adaptación, ya que permiten identificar deficiencias de las medidas de adaptación, sus posibles consecuencias y las intervenciones necesarias.
D. Herramientas metodológicas para el desarrollo de enfoques operativos aplicables a la construcción de un proceso de adaptación

La comunidad científica ha prestado atención al tema de la adaptación al cambio climático en áreas urbanas de manera más puntual en lo que respecta a aspectos específicos de la adaptación. Por ejemplo, la importancia de los servicios ecosistémicos en el proceso de adaptación (Grimm y otros, 2008; CESPAP, 2012); los retos para los países en desarrollo (Hardoy y Pandiella, 2009; Hardoy y Romero, 2011; Heinrichs y otros, 2011; Sánchez-Rodríguez, 2012; Banco Mundial, 2012); los conflictos entre mitigación y adaptación al cambio climático (Koch, Vogel y Patel, 2007; Zimmerman y Faris, 2011); el problema de la evaluación de la adaptación o el riesgo de obtener resultados contrarios a los deseados (la llamada “mala adaptación”) (Adger y otros, 2009a y 2009b; Hallegatte y Corfee-Morlot, 2011). Llama la atención el limitado número de publicaciones de la comunidad científica dedicadas al estudio de enfoques operativos que permitan guiar el proceso de adaptación con un planteamiento integrado. En comparación, las organizaciones internacionales se han centrado más en este tema. Cada organización tiene un enfoque particular para su guía metodológica, pero hay una serie de acciones que aparecen sistemáticamente en todas ellas.

A continuación se toman como referencia las guías metodológicas de ONU-Hábitat (2011d y 2012) y del Programa de las Naciones Unidas para el Desarrollo (PNUD, 2005 y 2010b), si bien sus perspectivas se completan con contribuciones de otras publicaciones centradas en la adaptación o la reducción de riesgos climáticos. Es importante aclarar que estas sugerencias tienen por objeto contribuir a fortalecer la capacidad analítica y operativa de los actores participantes en el proceso de adaptación y que no son solo una guía metodológica. Las sugerencias no presentan un esquema lineal. Cada ciudad tiene condiciones diferentes y el lector, según sus necesidades, puede seleccionar la secuencia completa o escoger parte de las medidas que se sugieren. Las sugerencias están pensadas como un marco de referencia flexible, cuyo objetivo es fortalecer la capacidad operativa de los actores que participan en el proceso de adaptación.

En el recuadro IV.1 se resumen las etapas sugeridas por el PNUD (2010a) para el desarrollo de programas y planes de adaptación. En el cuadro IV.6 se presenta la estructura de la guía metodológica de ONU-Hábitat (2011a). El lector encontrará similitudes entre los dos enfoques. En el presente capítulo se las considera un marco de referencia para los aspectos que a continuación se sugieren.

16 En la bibliografía este problema se denomina “mala adaptación” (Adger y otros, 2009a y 2009b).
CUADRO IV.6
ESTRUCTURA DE LA GUÍA METODOLÓGICA DE ONU-HÁBITAT

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Paso de la planificación</th>
<th>Preguntas clave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo A</td>
<td>¿Qué está sucediendo?</td>
<td>1. Introducción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Actores y participación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Evaluación de vulnerabilidad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Módulo B</td>
<td>¿Qué es lo más importante?</td>
<td>4. Valores y objetivos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Módulo C</td>
<td>¿Qué podemos hacer al respecto?</td>
<td>5. Identificación de opciones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Evaluación de opciones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Implementación</td>
</tr>
<tr>
<td>Módulo D</td>
<td>¿Lo estamos haciendo?</td>
<td>8. Monitoreo y evaluación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Ajustes y modificaciones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECUADRO IV.1
MEDIDAS SUGERIDAS POR EL PROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO CON VISTAS A LA PREPARACIÓN DE PLANES Y PROGRAMAS DE ADAPTACIÓN

- Definición del problema. Descripción de los problemas introducidos por el cambio climático que son fuente de preocupación.

- Identificación de las causas del problema. El análisis de las causas del problema involucra examinar cómo se los problemas del desarrollo se solapan con los que plantea el cambio climático. Puede incluir examinar por qué no se han tenido en cuenta los problemas del cambio climático. El análisis debe considerar los factores no climáticos.

- Identificar y articular las respuestas normativas. Incluye el análisis de aspectos como la identificación de problemas subyacentes que inciden en la vulnerabilidad y la adaptación al cambio climático; los resultados del diagnóstico de los cambios del clima y de aspectos técnicos; las consideraciones políticas necesarias para la elaboración de las respuestas normativas.
Recuadro IV.1 (conclusión)

- Obstáculos clave. Una vez definidas las respuestas normativas se procede a analizar los posibles obstáculos con los que puede tropezar su implementación.
- Diseño de las respuestas para lograr las soluciones deseadas. El diseño debe incluir los resultados esperados, los productos tangibles que logrará la iniciativa, las actividades e insumos necesarios para obtener los resultados clave. El diseño de las actividades debe incluir sus aspectos financieros y el enfoque para su seguimiento y evaluación.
- Puesta en práctica. Define las acciones necesarias para poner en práctica las acciones del proyecto y tiene en cuenta las pasos para mejorarlas en el futuro.

Los elementos operativos que se sugieren en esta sección se concentran en tres etapas del proceso de adaptación: análisis, diseño y puesta en práctica. Cada una de esas etapas incluye una serie de medidas. Por ejemplo, la etapa de análisis se corresponde con medidas 1, 2, 3 y 4 del esquema operativo sugerido por el PNUD en el recuadro IV.1, o con las medidas 1, 2, 3 y 4 del esquema operativo de ONU-Hábitat (véase el cuadro IV.6). La etapa del diseño coincide con la actividad 5 del plan del PNUD, y 5 y 6 de ONU-Hábitat. La puesta en práctica es similar a la actividad 6 (PNUD) y a las actividades 7, 8 y 9 de ONU-Hábitat.

1. La etapa del análisis

En la fase analítica se llevan a cabo las actividades necesarias para facilitar el diseño y la puesta en práctica de la adaptación. Las primeras actividades pueden variar según las necesidades de cada ciudad. Las ciudades con poca información pueden empezar por la revisión y la recopilación de datos e información referentes al riesgo de desastres y los posibles impactos del cambio climático, así como sobre las condiciones urbanas17. Es importante recordar el posible efecto acumulativo de esos impactos, que con frecuencia requieren, para hacerles frente, prever medidas transversales en varios sectores. Asimismo, es recomendable tener en cuenta el vínculo entre los problemas sociales, económicos, físicos y ambientales relevantes de cada ciudad y las causas y las manifestaciones de los impactos de los eventos climáticos, así como las medidas que se consideran necesarias para reducir y evitar sus consecuencias.

Otras ciudades pueden optar por empezar con la evaluación de la vulnerabilidad al cambio climático. En este capítulo se ha subrayado la importancia de vincular la evaluación de la vulnerabilidad al riesgo de desastres hidrometeorológicos y climáticos con la evaluación de la vulnerabilidad al cambio climático. Se trata de un paso esencial de la etapa analítica y uno de los insumos importantes para el diseño de la adaptación. Es recomendable que la evaluación de la vulnerabilidad tenga en cuenta sus tres elementos: exposición, sensibilidad y capacidad adaptativa.

A algunas ciudades les ha resultado útil definir claramente los resultados esperados de la estrategia o plan de adaptación, su temporalidad y los recursos necesarios para implementarlos desde su fase inicial (Anguelovski y Roberts, 2012). También les ha parecido conveniente describir cómo el cambio climático puede impactar en sectores claves del área urbana y la capacidad de las medidas de adaptación necesarias (PNUD, 2010a). Es útil tomar en cuenta el contexto del problema incluyendo programas y

17 Un referente útil es la información histórica disponible sobre los impactos y desastres causados por eventos hidrometeorológicos y climáticos en el área urbana objeto de estudio, así como las medidas que se han puesto en práctica para adaptarse a esos impactos.
proyectos actuales y planeados que pueden incidir en el proceso de adaptación. La identificación del rango de opciones para reducir la vulnerabilidad al cambio climático incluye el diagnóstico de los problemas existentes que crean las bases para una estrategia de adaptación (Ligeti y otros, 2007; PNUD, 2010a; ONU-Hábitat, 2011a; EIRD, 2012).

Una parte importante de la fase analítica consiste en desarrollar un plan participativo que garantice la incorporación de los conocimientos locales y las necesidades de la población en riesgo, que deben considerarse parte integral de las estrategias de adaptación. La posible gama de actores participantes en el proyecto de adaptación incluye: representantes de grupos comunitarios, organizaciones profesionales, el sector privado, la comunidad científica, organizaciones no gubernamentales y miembros del gobierno local. Las guías metodológicas para la reducción de riesgos de desastres en las comunidades mencionadas en la primera parte de este capítulo sugieren estrategias útiles para formar un grupo de actores participantes, así como los obstáculos y oportunidades que cabe esperar en este tipo de procesos (FICR, 2006 y 2008; Benson y Twiggg, 2007; CARE, 2009; ISSD, 2012; EIRD, 2012; Turnbull y Turvill, 2012; Turnbull, Sterrett y Hilleboe, 2013). El lector debe tener en cuenta que la formación de los equipos de trabajo con los actores participantes puede llevar varias semanas. También debe tener en cuenta que no es sencillo lograr y mantener el interés de los actores. Las experiencias aprendidas de los programas de reducción de riesgos, comentadas en la primera parte de este capítulo, destacan la importancia y la dificultad de mantener el interés de los actores participantes (Van Aalst, Cannon y Burton, 2008; EIRD, 2010; ALNAP, 2012; Bizikova, Boardley y Mead, 2010). El análisis de esas lecciones permite concluir que es recomendable fijar objetivos alcanzables a corto plazo y contar con los recursos necesarios para conseguirlas. Mantener la participación de los representantes de la comunidad depende en buena medida de qué la comunidad vea los beneficios de las iniciativas para reducir la vulnerabilidad a los desastres hidrometeorológicos y climáticos y fomentar la adaptación al cambio climático. Por ello es importante subrayar el vínculo entre la reducción del riesgo de desastres, la adaptación al cambio climático y el desarrollo local. En esa tarea resulta útil tener en cuenta los resultados de la evaluación de la vulnerabilidad.

Un resultado importante de la fase analítica es la obtención de una imagen de las necesidades, los obstáculos y las oportunidades de la adaptación al cambio climático. Esa información es útil para diversos fines: crear un escenario base contextual para el proceso de adaptación y para informar sobre el proceso a los actores clave y motivar su participación; informar sobre este tema a la población local y sensibilizarla; organizar y llevar a cabo una serie de consultas con actores clave para analizar el problema; realizar una consulta con expertos en estos temas. El escenario base contextual permite también definir objetivos del proceso de adaptación; poner de manifiesto su vínculo con el desarrollo urbano local y las oportunidades y obstáculos para fortalecerlo con programas gubernamentales actuales y futuros; establecer la relación con las políticas gubernamentales existentes y los vacíos de esas políticas que afectan a la vulnerabilidad y la adaptación, así como identificar las medidas, tanto del sector privado como del sector social, que presentan obstáculos y oportunidades para reducir la vulnerabilidad y fomentar la adaptación al cambio climático.

Según las condiciones de cada ciudad, esta primera etapa puede durar algunas semanas o incluso meses. De ahí que sea recomendable que la coordine el gobierno local, en particular el grupo de planificadores y los encargados de la protección civil. No obstante, la participación de la comunidad es importante para evaluar la vulnerabilidad e identificar las oportunidades y los obstáculos para la adaptación.

2. La etapa del diseño

El diseño y la planificación de la adaptación responden a las condiciones particulares de cada ciudad y son tareas que requieren tiempo y recursos para elaborar planes de acción eficaces. En la sección anterior se destacó la experiencia de otras ciudades subrayando la importancia de los gobiernos locales
en el desarrollo de la adaptación, en particular, el liderazgo y apoyo político de los alcaldes. A pesar de que el diseño de la adaptación es un proceso único en cada ciudad, los siguientes aspectos pueden contribuir a darle forma.

Un primer aspecto es la formación del grupo de trabajo que diseñará el proceso de adaptación. La experiencia de varias ciudades destaca la importancia del liderazgo y el apoyo político de los alcaldes para el diseño, la planificación y la puesta en práctica de la adaptación al cambio climático. No obstante, en el presente capítulo también se recupera la experiencia de las medidas y estrategias internacionales concebidas para reducir el riesgo de desastres asociados a eventos climáticos, que resaltan la importancia de contar con un equipo de trabajo en el que esté representada una serie de actores interesados en participar y con capacidad de hacer aportaciones al proceso de adaptación. La experiencia internacional muestra que la eficacia y el éxito de la adaptación dependen de que refleje las necesidades de la comunidad y de que esta haga suyo el proceso. Las guías metodológicas arriba mencionadas contribuyen a mejorar el proceso de selección de los actores y la formación de grupos de trabajo.

Un segundo aspecto es la visión integral del proceso de adaptación, que ha de contar con estrategias, políticas y medidas a corto, mediano y largo plazo. Esa visión incluye la definición de objetivos y estrategias para el proceso de adaptación, sus etapas y sus medidas, los actores participantes y los recursos necesarios para llevarlo a cabo. La visión integral del proceso permite organizar y priorizar sus etapas y actividades. Cabe tener cierta flexibilidad que facilite la respuesta a impactos no esperados, pues así se facilita ajustar las actividades planificadas de acuerdo con posibles cambios en las necesidades y recursos locales y con los avances en el conocimiento de los impactos del cambio climático. La visión integral de la adaptación identifica y evalúa las medidas alternativas que pueden implementarse.

Asimismo, es importante que el diseño y la planificación tengan un enfoque realista con metas intermedias posibles de alcanzar con los recursos disponibles, en particular a corto plazo, un punto fundamental para mantener el interés de los participantes en el proceso. Esas metas deben tener beneficios tangibles para la comunidad. Un enfoque útil consiste, antes que nada, en identificar medidas con beneficios múltiples: reducir la vulnerabilidad y fomentar la adaptación al cambio climático; prevenir y reducir los desastres de origen hidrometeorológico y climático, y fortalecer las oportunidades de desarrollo local a corto, mediano y largo plazo. La literatura internacional las llama políticas o medidas de no arrepentimiento, o de beneficios rápidos y poco que lamentar (Hallegatte, 2009; PNUD, 2010b). En el recuadro IV.2 se describen brevemente ese tipo de acciones. Este enfoque ayuda a reducir el peso de la incertidumbre a la hora de definir los impactos del cambio climático y la posible necesidad de contar con varias iniciativas para atender los problemas identificados. Las lecciones aprendidas de los trabajos internacionales para reducir los riesgos de desastres, mencionadas en la primera parte de este capítulo, reconocen la importancia de establecer metas realistas, un elemento importante para permitir que la comunidad haga suyo el proceso de adaptación.

Asimismo, es pertinente considerar en el diseño de esas acciones la incidencia directa e indirecta de los planes sectoriales a nivel nacional y subnacional vinculados directa e indirectamente a la vulnerabilidad y la adaptación a la variabilidad y el cambio climáticos (inversión en infraestructura, desarrollo urbano, vivienda, protección ambiental, lucha contra la pobreza y la marginación, entre otros). Es posible que ello implique tomar en cuenta información adicional para priorizar las respuestas identificadas mediante enfoques participativos e incluyentes de la amplia gama de actores que participan en el proceso de adaptación.

Un aspecto central de dicho proceso es el fortalecimiento de las capacidades necesarias (técnicas, humanas, físicas, económicas, institucionales y financieras) para su diseño, planificación y puesta en práctica. Éste es un aspecto al que la literatura internacional quizá no otorga suficiente atención, pero que representa un elemento fundamental para la construcción de planes operativos eficaces a corto y largo plazo. La adaptación al cambio climático, así como la prevención y la reducción de los riesgos
de desastres, el desarrollo sostenible o la lucha contra la pobreza, son temas complejos que requieren enfoques multidimensionales en su gestión. La construcción de esos enfoques no es sencilla, y con frecuencia los actores locales no cuentan con la capacidad necesaria para desarrollarlos. Fortalecer las capacidades de los actores antes, durante y después de las etapas iniciales del diseño de las actividades de adaptación puede mejorar significativamente su eficiencia y reducir las posibilidades de la llamada “mala adaptación”.

El seguimiento y la evaluación son dos tareas esenciales de todo esquema de planificación, pero particularmente relevantes en el caso de la adaptación (Adger y Barnett, 2009; Preston y otros, 2009; Arnell, 2010). A pesar de que son tareas propias de la implementación, es recomendable establecer un plan para el seguimiento y una métrica para la evaluación de las medidas y estrategias de adaptación dentro de la etapa de diseño. La bibliografía internacional reconoce la importancia de la evaluación, pero también de la poca atención que se le ha prestado en los planes de adaptación elaborados hasta la fecha (Doria y otros, 2009; Preston y otros, 2009; Tompkins y otros, 2010). Los diversos elementos mencionados en la etapa de análisis son útiles para el diseño de una métrica de evaluación, en particular la evaluación de la vulnerabilidad y la creación de un escenario contextal.

RECUADRO IV.2

MEDIDAS CON BENEFICIOS RÁPIDOS Y POCO QUE LAMENTAR (“QUICK WIN-LOW REGRET”) PARA LA ADAPTACIÓN AL CAMBIO CLIMÁTICO

Dado el costo de las medidas de adaptación, la inmediatez de otros problemas cotidianos en sociedades en desarrollo (reducción de la pobreza, marcada desigualdad de los ingresos, acceso a sistemas sanitarios y educativos, problemas de salud, otros) y las limitaciones presupuestarias de los gobiernos locales, el programa ONU-Hábitat sugiere a los planificadores locales que, entre las medidas de adaptación, en primer lugar tengan en cuenta las llamadas “poco que lamentar.” Se trata de opciones de adaptación que, con una inversión moderada, incrementan la capacidad de sobreponerse a los riesgos climáticos futuros. Idealmente, son inversiones que contribuyen también a lograr metas del desarrollo local (entre otras, mejorar el drenaje pluvial y sanitario, la distribución y calidad del agua); es decir, medidas que a la vez que atienden necesidades urgentes del desarrollo local, contribuyen a preparar y mejorar la capacidad adaptativa para hacer frente al cambio climático. En ocasiones, son inversiones ya programadas o forman parte de estrategias ya existentes que solo requieren pequeñas consideraciones.

3. La implementación

Al igual que el diseño del proceso de adaptación, la puesta en práctica depende de las características y necesidades de cada ciudad. No obstante, vale la pena tener en cuenta los siguientes aspectos:

A pesar de que el gobierno local tiene un papel central en la coordinación de la puesta en práctica de la adaptación, es relevante que el equipo encargado de ese proceso cuente con la participación de otros actores clave. Una de las primeras acciones de ese equipo consiste en formalizar el papel de cada uno de los actores (funciones y responsabilidades) y la forma como el grupo se coordina con los tomadores de decisiones. Según los recursos y necesidades de la ciudad, se puede considerar la creación de comités de trabajo con un programa definido de acciones y recursos.
Otra tarea necesaria es definir un esquema de colaboración con otros órdenes de gobierno para la puesta en práctica del proceso de adaptación local. En particular, elaborar un plan operativo entre las políticas y programas a nivel nacional y subnacional que puedan contribuir a reducir la vulnerabilidad, prevenir el riesgo de desastres provocados por eventos hidrometeorológicos y climáticos y crear la adaptación al cambio climático, todo ello de manera coherente y coordinada con los planes de desarrollo local (lucha contra la pobreza, desarrollo social, creación de vivienda, programas de infraestructura, protección ambiental, entre otros). La coordinación operativa entre los distintos niveles de gobierno debe tratar de incorporar en las políticas y programas nacionales y estatales los elementos definidos en el plan de adaptación local, así como más recursos financieros y apoyo técnico asociado a los programas nacionales y estatales.

La puesta en práctica de la adaptación debe mantener el programa para la creación de capacidades de los actores participantes en el proceso. Los planificadores urbanos y los tomadores de decisiones a nivel local desempeñan un papel importante en la adaptación; de ahí que fortalezcan sus capacidades contribuya a que el proceso sea más eficaz. Así y todo, la creación de capacidades debe extenderse a otros actores urbanos que participan en dicho proceso, ya que contribuyan a contrarrestar el impacto de la rotación de personal técnico y tomadores de decisiones que se produce cuando cambian las administraciones municipales. La capacitación de actores sociales contribuye a que el proceso sea sostenible y más eficaz, y con beneficios a corto y largo plazo.

Las características del proceso de adaptación arriba descritas obligan a darle seguimiento y evaluarlo periódicamente a fin de revisar y ajustar sus metas, estrategias, políticas y medidas. Es recomendable establecer un plan operativo para el seguimiento del proceso de adaptación. El proceso de adaptación conlleva incertidumbre sobre los impactos del cambio climático, los cambios en el ámbito urbano, el carácter dinámico de la vulnerabilidad, los cambios internos en la estructura de la comunidad y los cambios que registran los procesos socioeconómicos y geopolíticos que afectan a las condiciones internas de la comunidad. Por ello es recomendable constituir un comité de seguimiento con representantes de los diversos actores urbanos que participan en el proceso de adaptación (el seguimiento no debe recaer únicamente en los representantes del sector público) y definir un programa de trabajo. Ese comité puede utilizar el escenario base elaborado en la etapa de análisis y los indicadores establecidos en la etapa de diseño para identificar los ajustes que deben realizarse en el proceso. El seguimiento de la adaptación es un instrumento importante para facilitar el aprendizaje entre los actores participantes en la adaptación, pues facilita extraer lecciones útiles de su diseño y puesta en práctica para luego realizar ajustes y mejorar periódicamente su operación. La escasa experiencia a nivel internacional en lo relativo a la adaptación al cambio climático refuerza la necesidad de extraer lecciones útiles a nivel local. Cada ciudad debe decidir la frecuencia con que debe realizarse la evaluación de la adaptación, pero es recomendable que se realice una evaluación al final de las etapas importantes. La planificación del proceso de adaptación debe prever suficientes recursos para llevar cabo esa evaluación.

Una última sugerencia para implementar la adaptación es poner en práctica una estrategia de comunicación y difusión que subraye sus alcances, su estructura, puesta en práctica y los logros esperados. Las ciudades pueden basar su estrategia de comunicación en medios tradicionales (prensa, radio, videos, boletines, otros) o utilizar también medios de información populares (p. ej., reuniones con asociaciones de colonos). Así, algunas ciudades han llevado a cabo representaciones teatrales en colonias populares para comunicar y difundir aspectos importantes de la reducción al riesgo de desastres hidrometeorológicos y climáticos (Obermaier y otros, 2009; UNISDR/ITC/PNUD, 2010). Una población informada tiene más capacidad de acción en la prevención del riesgo de desastres y en el fomento de la adaptación al cambio climático.

La planificación es una parte importante de la puesta en práctica de la adaptación (Wilson, 2006; Blanco y Alberti, 2009; Roberts, 2010; Preston y otros, 2011; Carmin, Nadkarni y Rhie, 2012; Matthews, 2012; Rodima-Taylor, Olwig y Chhetri, 2012; Sánchez-Rodríguez, 2012). La literatura
internacional otorga a la planificación un papel central para desarrollar un proceso de adaptación eficiente. Un requisito para ello es que esa planificación cuente con un enfoque multidimensional, es decir, con una coordinación transversal entre las oficinas del sector público a nivel local y coordinación con los otros órdenes de gobierno (Juholu y Westerhoff, 2011). Los ajustes a la operación transversal y multinivel del sector público ayudarían no solo a mejorar el proceso de adaptación, sino que facilitarían también desarrollar planes de desarrollo más eficaces. La puesta en práctica de estrategias y medidas de adaptación por parte de los gobiernos locales de diversos países han permitido detectar dificultades a la hora de practicar la colaboración transversal entre sus oficinas de planificación, necesaria para llevar a cabo la planificación multidimensional que se requiere a fin de implementar la adaptación (Wilson, 2006; Koch, Vogel y Patel, 2007; Storbjork, 2007; Urwin y Jordan, 2008; Corfee-Morlot y otros, 2009; Roberts, 2010; Berrang-Ford, Ford y Patterson, 2011; Doran, 2011; MAV, 2011; Preston y otros, 2011; Angelovski y Carmin, 2011; Carmin, Angelovski y Roberts, 2012; Larsen y otros, 2012; Pickett y otros, 2012). Por ello es recomendable considerar con anticipación planes transversales de colaboración y definir con claridad el papel y los recursos de la planificación. Eventualmente, los gobiernos locales pueden sugerir que se modifique la estructura de algunos de sus órganos para llevar a cabo la adaptación al cambio climático dentro de nuevos esquemas multidimensionales.

A lo largo de este capítulo hemos hecho hincapié en los beneficios de los enfoques participativos en la planificación e implementación de la adaptación. Por tanto, es importante reconocer que el papel central del sector público en ese proceso no debe restar importancia a la participación de los sectores social y privado. Ello implica nuevos esquemas de gobernabilidad tanto para el desarrollo urbano como para planificar la adaptación. La creación de esos nuevos esquemas de gobernanza deben ser reconocidos por la planificación de la adaptación.

4. Ejemplos

En esta última sección se seleccionan algunos ejemplos de planes de adaptación al cambio climático implementados en ciudades de América Latina y otras partes del mundo. La intención es ilustrar algunos de los aspectos mencionados en el capítulo y ofrecer al lector referencias que contribuyan al desarrollo de sus propias iniciativas de adaptación. No se trata de una compilación extensiva, pues cada año surgen nuevas iniciativas de adaptación al cambio climático; el propósito es ilustrar el tipo de procesos de adaptación que pueden implementarse en las áreas urbanas de la región y, en algunos casos, las lecciones que hasta ahora se pueden aprender de ellos.

a) México, D.F.

México, D.F. es una de las ciudades de América Latina con mayor visibilidad en el contexto internacional del cambio climático. El liderazgo de su alcalde, Marcelo Ebrard, como presidente del Consejo Mundial de Alcaldes sobre Cambio Climático (2009-2012) contribuyó a proyectar la imagen de la ciudad a nivel internacional. México, D.F., presenta avances en la creación de un proceso de adaptación al cambio climático en América Latina. La ciudad creó el Programa de Acción Climática 2008-2012 con 24 medidas de mitigación de las emisiones de gases de efecto de invernadero y 12 medidas para la adaptación al cambio climático. Este programa tiene una marcada tendencia hacia la mitigación, ya que cerca del 94% de su presupuesto se destina a medidas de mitigación, mientras que solo el 6% se asigna a la adaptación (GDF, 2008). Sin embargo, el gobierno de México, D.F. ha implementado una serie de medidas relevantes que contribuyen a mejorar la capacidad de adaptación de la ciudad. Una de ellas fue la creación, en 2010, de la Comisión Intersecretarial para el Cambio Climático, con la finalidad de coordinar las acciones correspondientes entre las diversas oficinas del gobierno local.

Una segunda acción importante es la creación del Centro Virtual para el Cambio Climático (http://www.cvcvcm-atmosfera.unam.mx/) en colaboración con el Instituto de Ciencia y Tecnología
del Distrito Federal y el Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México. El Centro Virtual ha promovido la investigación sobre el cambio climático en México, D.F., y facilita el acceso y difusión de la información relevante para el conocimiento del tema. Diversos proyectos relevantes al estudio de la vulnerabilidad y la adaptación al cambio climático se han financiado gracias a esta iniciativa, y los resultados están disponibles en la página web del Centro Virtual para el Cambio Climático.

Una tercera medida relevante es la promulgación y publicación de la Ley de Desarrollo Sustentable y Mitigación y Adaptación al Cambio Climático para el Distrito Federal (2011), que establece lineamientos y medidas de mitigación y adaptación para la ciudad. Pocas ciudades de América Latina han creado legislaciones específicas sobre el cambio climático (entre otras, São Paulo, publicada en 2009, y Río de Janeiro, Buenos Aires y Belo Horizonte, publicadas en 2011). Esas legislaciones aportan a cada una de esas ciudades amplio un marco normativo para la mitigación y la adaptación a nivel local. Cabe señalar que esa legislación hace más hincapié en la mitigación que en la adaptación al cambio climático, un enfoque recurrente en los programas y planes de acción climática de las ciudades.

El fomento de la adaptación al cambio climático en México, D.F. permite algunas reflexiones que pueden ser útiles para otras ciudades. Los primeros pasos dados de conformidad con el Programa de Acción Climática ofrecen una visión fragmentada de un tema complejo, que ha dejado de lado temas fundamentales para el futuro de la ciudad, como el abastecimiento y la distribución de agua potable y el riesgo de inundaciones, dos problemas recurrentes en México, D.F. y que, si se tienen en cuenta los escenarios del cambio climático, pueden agravarse (Sánchez-Rodríguez 2010). La ciudad no cuenta con una evaluación de la vulnerabilidad a los impactos del cambio climático, aunque avances recientes de la investigación apoyada por el gobierno de la ciudad han mejorado la disponibilidad de información útil para la adaptación. El Banco Mundial realizó, en el contexto del cambio climático, un análisis de la pobreza en la ciudad, que contribuye a la evaluación de la vulnerabilidad (Banco Mundial, 2012). La experiencia de México, D.F. ilustra la importancia de contar con una estrategia de acción para fomentar la adaptación. Las sugerencias que se han ofrecido en este capítulo contribuyen a la planificación de esa estrategia y las diversas medidas que la componen.

b) Región Metropolitana de Bogotá-Cundinamarca

El Programa de las Naciones Unidas para el Desarrollo (PNUD) apoya el Plan Regional Integral de Cambio Climático (PRICC) para la región capital de Bogotá-Cundinamarca. El PRICC se encuentra aún en fase de desarrollo, pero ya ha realizado avances sobre lo que hay información disponible en su página web (http://www.priccregioncapital.org/). El plan se desarrolla con el Enfoque Territorial para el Cambio Climático (TACC, por sus siglas en inglés) del PNUD, y en las siguientes etapas: 1) desarrollar un proceso de planificación con actores participantes procedentes de diversos sectores; 2) preparar los perfiles de cambio climático y los escenarios de vulnerabilidad; 3) identificar opciones estratégicas conducentes a la reducción de emisiones y trayectorias de desarrollo resiliente; 4) identificar políticas y opciones de financiamiento para implementar medidas prioritarias en el contexto del cambio climático, y 5) preparar una hoja de ruta para el desarrollo del plan. Al igual que en el caso de otros planes y programas de cambio climático urbano, el PRICC incluye medidas de mitigación y de adaptación. Es importante destacar que una de las actividades novedosas e importantes del PRICC es la implementación de un programa para fortalecer capacidades institucionales mediante una diplomatura presencial y virtual para los socios del PRICC (47 participantes). A pesar de la importancia del fortalecimiento y la creación de capacidades señalada reiteratedamente en este capítulo, son pocos los programas y planes de acción climática que los incorporan. Un estudio reciente sobre el cambio climático y las ciudades de Colombia proporciona información adicional sobre Bogotá (Lampis y Fraser, 2012).
c) Región metropolitana de Montevideo

El PNUD apoyó el desarrollo del plan climático para la región metropolitana de Montevideo (Cambio climático territorial - Desarrollo local resiliente al cambio climático y de bajas emisiones de carbono en los departamentos de Canelones, Montevideo y San José). El proyecto utilizó el enfoque del territorio como esquema analítico para definir programas, proyectos y planes que contribuyeran a la disminución de las emisiones de carbono y el desarrollo de políticas y medidas encaminadas a fomentar la adaptación al cambio climático, y ofrece lecciones útiles a otras ciudades de la región. La coordinación del proyecto recayó en el PNUD y en un comité directivo intergubernamental con representación de cada dependencia. Se formaron grupos de trabajo departamentales para promover la participación de los actores locales en las fases de diagnóstico y diseño de las líneas estratégicas del plan. En el caso de la ciudad de Montevideo se crearon dos grupos de trabajo, uno con representantes de las diversas oficinas de la intendencia de la ciudad para la elaboración de una agenda transversal, y otro encargado de promover la participación de los actores locales. El compromiso de los líderes políticos de los tres departamentos de la región metropolitana fue un elemento importante para el desarrollo del proyecto. No obstante, es necesario destacar el apoyo del PNUD, tanto técnico como para el financiamiento del proyecto.

Entre las principales lecciones aprendidas de este proyecto destacan las siguientes (PNUD, 2012):

- El Enfoque Territorial para el Cambio Climático (TACC) proporcionó un marco analítico y operativo útil para el desarrollo del proyecto. Un elemento importante fueron los ajustes realizados por el comité directivo para adaptar los lineamientos a las condiciones locales.

- No resultó sencillo llevar a cabo, en los plazos fijados para el desarrollo del proyecto, el estudio de la vulnerabilidad definida en función de la exposición, la sensibilidad y la capacidad adaptativa. Los propios participantes consideran que es deseable realizar consultas previas entre el equipo del proyecto y los equipos de trabajo en cada región subnacional a fin de elegir adecuadamente el marco conceptual de referencia para la elaboración del mapa de vulnerabilidad, e identificar cuáles resultan más apropiados para las características culturales y las formas de planificación conocidas a nivel local. Una dificultad adicional fue la incorporación de información científica en la evaluación de la vulnerabilidad, de ahí que sea recomendable calcular adecuadamente el tiempo y los recursos necesarios para llevar a cabo una evaluación integral de la vulnerabilidad que contribuya a fomentar la adaptación.

- Los grupos de trabajo transversales pudieron tener una visión multidimensional del complejo tema del cambio climático. Algunos de esos grupos continuaban trabajando después de finalizar el proyecto, en beneficio de mejores programas de planificación y ordenación del territorio. Sin embargo, el proyecto tropezó con problemas de coordinación interinstitucional similares a los que se constatan, como se ha mencionado más arriba, en muchas áreas urbanas de América Latina y otras regiones. Vista la recurrencia de este problema, es conveniente tener en cuenta otros planes de acción, en particular si la planificación de la adaptación se considera un proceso de aprendizaje, pues se trata de uno de los temas en que la capacitación y el liderazgo político pueden desempeñar un papel importante para el fomento de la adaptación.

- La complejidad del tema del cambio climático y su dinámica conllevan la necesidad de generar información con frecuencia, y requieren la actualización y capacitación continua de los recursos humanos que participan en el proceso de adaptación. Esa complejidad y las limitaciones de tiempo y recursos para el desarrollo del proyecto dificultaron llevar a cabo una planificación profunda en todos los temas.

- En el desarrollo del proyecto también se tropezó con la dificultad de gestionar los procesos participativos. La participación de actores ajenos al sector público, a través de talleres,
fue puntual y quizás no tan activa como la plantea el TACC. Como se ha mencionado previamente al analizar la experiencia en la reducción del riesgo de desastres a nivel internacional, conseguir y mantener la participación de un grupo de actores de diversa procedencia es complicado. Es recomendable prestar más atención a este tema en la preparación y el desarrollo de este tipo de iniciativas. El proyecto de Montevideo afrontó, además, dificultades para utilizar, en los trabajos participativos con todos los actores, información sobre los escenarios de cambio climático. En sus reflexiones, el proyecto señala que parece deseable dividir el proceso de mapeo en dos etapas, una etapa inicial sobre los impactos observados, y una segunda etapa sobre los impactos potenciales basados en información de escenarios.

El proyecto de la Región metropolitana de Montevideo es un referente interesante y útil para otras áreas urbanas de América Latina. Cabe destacar: su enfoque en la planificación territorial; la búsqueda de planes participativos con un amplio espectro de actores; la elaboración de una agenda transversal; la diversidad de medidas consideradas en el diseño de evaluaciones para la priorización de medidas y las lecciones aprendidas a lo largo de su desarrollo. Así y todo, llama la atención la poca atención que se prestó al seguimiento y la evaluación del proyecto. Es este uno de los aspectos que con mayor recurrencia aparece en la bibliografía internacional que se ha mencionado a lo largo de este capítulo, y también a la luz de las lecciones aprendidas durante el desarrollo del proyecto. El seguimiento de este caso de estudio es particularmente importante por las lecciones que aún queden por aprender de su puesta en práctica.

d) Esmeraldas

El proyecto de Evaluación del Cambio Climático en Esmeraldas, Ecuador, se desarrolla como uno de los proyectos piloto de la iniciativa Ciudades y Cambio Climático del Programa de las Naciones Unidas para los Asentamientos Humanos (ONU-Hábitat, 2012). La información de ONU-Hábitat no especifica el estado de este proyecto, pero permite extraer algunos elementos útiles para analizar las experiencias de adaptación en las áreas urbanas de América Latina. El caso de Esmeraldas es interesante por tratarse de una ciudad pequeña en comparación con las otras áreas metropolitanas antes mencionadas. Un aspecto que llama la atención de este proyecto es la diferencia de enfoque entre la descripción del proyecto y la guía metodológica propuesta por ONU-Hábitat (2010 y 2011a). La descripción presenta una evaluación de la vulnerabilidad basada en algunos elementos de exposición y sensibilidad basados en registros históricos de los impactos hidrometeorológicos y climáticos. En dicha descripción se mencionan algunos aspectos de los escenarios del cambio climático para la zona, pero se reconoce la dificultad de incorporarlos en el análisis. Las consideraciones sobre capacidad adaptativa subrayan los beneficios del proyecto Agenda 21, también de ONU-Hábitat, que apoya la capacitación de planificadores urbanos locales. Sin embargo, no se presta atención a los enfoques participativos que refuercen la capacidad de agencia de los actores locales, en el caso del proyecto que se lleva a cabo en Filipinas (ONU-Hábitat, 2010). El documento del proyecto señala, entre los obstáculos para la adaptación: la dificultad de obtener recursos financieros para el diseño y la puesta en práctica de la adaptación al cambio climático y la planificación urbana en general; la poca capacidad de gobernabilidad a nivel local en la planificación y gestión urbana, un hecho que merma las posibilidades de adaptación al cambio climático; la difícil coordinación entre los distintos niveles de gobierno, en particular para equilibrar la desigual distribución de atribuciones y recursos entre los gobiernos nacional, subnacional y local.

El caso de Esmeraldas contribuye a distinguir entre las posibilidades y las necesidades de adaptación al cambio climático de las ciudades pequeñas de América Latina. No hay que olvidar que las mayores tasas de crecimiento urbano de la región se concentran en las ciudades pequeñas y medianas, que brindan mejores oportunidades para orientar su crecimiento futuro incorporando criterios para prevenir y reducir el riesgo de desastres climáticos y fomentar la adaptación al cambio climático. Reorientar la forma en que crecen esas ciudades puede significar una diferencia importante en las opciones de desarrollo sostenible de la región en el siglo XXI.
e) **Quito**

El Plan de Acción Climático de Quito 2012-2016 está planeado como continuación de la Estrategia Quiteña al Cambio Climático (2009). El plan cuenta con 28 proyectos para la mitigación y adaptación en sectores estratégicos: energía, movilidad, agua, riesgos y biodiversidad\(^{18}\), y tiene en cuenta tres ejes estratégicos: 1) generación y gestión de la información; 2) acciones de adaptación y mitigación en sectores estratégicos; 3) participación y corresponsabilidad ciudadana. Entre las metas de adaptación destacan los trabajos para reducir un 20% la vulnerabilidad social, ambiental y económica al cambio climático, para implementar medidas de adaptación en los sectores estratégicos arriba señalados, fortalecer la producción y gestión de información y conocimientos sobre el cambio climático, e involucrar a la ciudadanía y los actores clave en las respuestas al cambio climático. La elaboración del plan cuenta con la asistencia técnica y el apoyo financiero de la organización internacional CDKN Alianza Clima y Desarrollo\(^{19}\). Para el desarrollo del plan se emplea un programa participativo a través de talleres para involucrar la comunidad científica, técnica, académica y política. Carmin, Anguelovski y Roberts (2012) ofrecen, en un estudio comparativo con otras ciudades, información adicional sobre los trabajos de adaptación en Quito.

f) **Cartagena de Indias**

El apoyo de una organización internacional (CDKN Alianza Clima y Desarrollo) ha sido un elemento importante para elaborar respuestas de adaptación al cambio climático en la ciudad de Cartagena de Indias, Colombia, donde se desarrolló el proyecto Evaluación de la Vulnerabilidad y Lineamientos de Adaptación como primera fase (2011-2012) de un proyecto más amplio, la Integración de la Adaptación al Cambio Climático en la Planificación Territorial y Gestión Sectorial en Cartagena de Indias\(^{20}\). Los objetivos de la segunda fase (2012-2014) incluyen: desarrollar un plan de adaptación que priorice acciones a corto, mediano y largo plazo con el fin de reducir la vulnerabilidad al cambio climático; elaborar un plan de adaptación y al menos dos proyectos específicos para obtener financiamiento nacional e internacional; definir el marco operacional, político e institucional para la implementación del plan de adaptación; preparar una guía metodológica que deberá emplearse para los planes de adaptación a nivel urbano y a nivel nacional en Colombia; generar conciencia entre las instituciones y la sociedad en general acerca de la importancia de la adaptación al cambio climático. Un estudio reciente sobre el cambio climático y las ciudades de Colombia proporciona información adicional sobre Cartagena, Bogotá y otras ciudades del país (Lampis y Fraser, 2012).

g) **Santiago**

El Plan de Adaptación al Cambio Climático para la Región Metropolitana de Santiago fue desarrollado por el Proyecto Clima Adaptación Santiago bajo la coordinación del Centro Helmholtz de Investigaciones Ambientales - UFZ (Alemania) y con la colaboración de la Pontificia Universidad Católica de Chile, la Universidad de Chile y la Comisión Económica para América Latina y el Caribe (CEPAL). El plan, que se entregó a las autoridades locales a fines de 2012\(^{21}\), tiene en cuenta las posibles implicaciones del cambio climático para la Región Metropolitana de Santiago y señala un aumento del número de días en que la temperatura supera los 30°C y una disminución del total de las precipitaciones anuales del orden del 20%. Asimismo, emplea un enfoque centrado en los impactos (calor extremo e inundaciones) para definir 14 medidas de adaptación en cuatro sectores: uso del suelo; reducción de

\(^{19}\) [http://cdkn.org/project/technical-assistance-to-improve-climate-resilience-in-quito-ecuador/?loclang=en_gb]

\(^{20}\) [http://cdkn.org/project/integracion-de-la-adaptacion-al-cambio-climatico-en-la-planificacion-territorial-y-gestion-sectorial-de-cartagena-de-indias/]

amenasas de calor extremo e inundaciones; vulnerabilidad y reducción de la exposición a amenazas, y agua y energía (CAS, 2012) y hace hincapié en la coordinación intersectorial dentro del sector público (gobierno regional, Ministerio del Medio Ambiente Regional y Secretaría Regional Ministerial de Medio Ambiente). El proyecto creó un Manual de Implementación como complemento del Plan de Adaptación al Cambio Climático para la región metropolitana de Santiago (CAS, 2012). En dicho manual se definen las competencias y atribuciones de cada actividad en las diversas oficinas de gobierno para facilitar la cooperación intersectorial dentro del sector público. Un segundo manual para profesionales se orienta hacia la difusión de la importancia de formular respuestas de adaptación al cambio climático en la región metropolitana. El plan cuenta, además, con un sistema de información interactiva en una página web que permite al usuario visualizar diversas variables del proyecto en el espacio urbano. (http://www.ufz.de/cas_webapp/).

Asimismo, cuenta con dos casos de estudio que ilustran con mayor detalle el análisis de la exposición a amenazas de calor extremo e inundaciones en las comunas de la Florida y Pedro Aguirre Cerda. En los casos de estudio se detallan las áreas expuestas a los impactos del cambio climático y las medidas útiles para adaptarse a esos impactos (techos y fachadas verdes; zonas verdes urbanas; técnicas de enfriamiento pasivo para hogares de bajos recursos; medidas para reducir el riesgo de inundación; instalaciones sanitarias de bajo consumo de agua en viviendas; reutilización de aguas grises; aspectos para mejorar la eficiencia en el uso de energía).

h) Otras áreas urbanas

Al lector puede resultarle interesante comparar los ejemplos de América Latina con los trabajos para fomentar la adaptación que se han llevado a cabo en otras regiones. Con el fin de ilustrar esas experiencias se presentan aquí los casos de Nueva York22 y Chicago23 en los Estados Unidos; Toronto24 en el Canadá, y Londres25 y Rotterdám26 en Europa. Las limitantes de espacio no permiten detallar las consideraciones sobre cada una de esas ciudades. De ahí que en esta sección se ofrezcan solo algunas consideraciones generales como complemento a la información analizada a lo largo del presente capítulo. El lector está invitado a visitar la página web de las iniciativas de adaptación de las ciudades mencionadas, con información detallada sobre sus planes de adaptación.

Un aspecto común de esas iniciativas es que definen sus políticas de adaptación una vez determinados los impactos y riesgos futuros del cambio climático. Esas políticas conllevan la implementación de una serie de medidas, entre las que sobresale la construcción de infraestructuras como parte de las respuestas a esos impactos. En varios casos se trata de grandes obras de defensa contra los impactos del cambio climático.

Algunas ciudades han empezado a utilizar la vegetación para proveer una amplia gama de servicios ecosistémicos, lo que ha dado en llamarle la “infraestructura verde”: captación, almacenamiento y filtración de agua de lluvia; enfriamiento por evaporación; creación de sombra; reducción de emisiones de gases de efecto de invernadero (Gill y otros, 2007; Grimm y otros, 2008). Entre los ejemplos interesantes del uso de servicios ecosistémicos para resolver problemas de infraestructura urbana y adaptación al cambio climático cabe citar los llamados techos verdes.

Por ejemplo, la ciudad de Nueva York se enfrentaba al problema de derrames del drenaje sanitario y pluvial en casos de precipitaciones intensas, debido al envejecimiento de su infraestructura. Actualizar el sistema de drenaje con un sistema tradicional requeriría una inversión de 6.800 millones de dólares. La ciudad decidió invertir 5.300 millones de dólares en infraestructura verde (techos, calles y banquetas). Esta inversión le permite obtener múltiples beneficios: las zonas verdes, incluidos los techos verdes, que captan más precipitación y reducen la presión en el sistema actual de drenaje pluvial, mejoran la calidad del aire y la eficiencia energética de las construcciones, reduciéndose así la demanda de electricidad para el sistema de aire acondicionado y calefacción (Nueva York, 2010). Chicago, Malmo (Suecia), Santiago y México, D.F. son otras ciudades que fomentan el uso de techos verdes.

Otros aspectos que vale la pena destacar de las experiencias de adaptación realizadas en esas ciudades son:

La importancia del liderazgo político de los alcaldes que apoyan las iniciativas de adaptación al cambio climático; la creación de órganos de coordinación de esas iniciativas con capacidad para convocar a los diversos actores participantes y que envían sus informes directamente al alcalde; el desarrollo de enfoques transversales que facilitan la construcción de enfoques multidimensionales de las estrategias, políticas y medidas de adaptación; enfoques participativos de diversos actores, pero, centrado sobre todo, en representantes de organismos locales; enfoques tradicionales de planificación con participación moderada de otros actores sociales.

E. Consideraciones finales

La reducción de la vulnerabilidad y la creación de procesos de adaptación al cambio climático en las áreas urbanas de América Latina han registrado avances en los últimos cinco años. No obstante, es importante reconocer que aún son muy pocas las áreas urbanas con estrategias y medidas de adaptación planificada al cambio climático. Uno de los aspectos del presente capítulo que vale la pena destacar es la diversidad y la cantidad de información actualmente disponible para apoyar el diseño de estrategias y medidas de adaptación, ya que facilita ese proceso a nivel local. Con todo, es posible que el lector vea que no siempre es fácil discriminar entre tanta información y decidir el enfoque que conviene usar para su ciudad. Durante el análisis que se llevó a cabo para la preparación de este capítulo, se constató que los enfoques de diversas organizaciones internacionales y sus guías metodológicas presentan puntos tanto fuertes como débiles, pero es importante subrayar que esas organizaciones insisten en la importancia de considerar las guías como herramientas flexibles para apoyar la toma de decisiones y el desarrollo de capacidades analíticas, y no como un sustituto del análisis y la creatividad necesarios para desarrollar planes de adaptación.

Algunos de los aspectos que vale la pena destacar son:

- La importancia de considerar la adaptación como un proceso de aprendizaje que facilita corregir errores y optimizar lecciones positivas. Es interesante señalar que pocos de los ejemplos considerados en la última sección de este capítulo plantean la adaptación como un proceso, ya que en la mayoría de los casos se presenta como un proyecto para desarrollar un plan climático. En buena medida eso puede deberse a que muchas de las iniciativas de adaptación han sido fomentadas y apoyadas financieramente y técnicamente por una organización externa al gobierno local y, por regla general, esas organizaciones cuentan con recursos limitados para este tipo de apoyo. La transición del proyecto a un proceso es un paso fundamental para la sostenibilidad de este tipo de iniciativas; es decir,

27 La Agencia de Protección Ambiental de los Estados Unidos estima que durante los próximos 20 años se requerirán cerca de 300.000 mil millones de dólares para mejorar la infraestructura de drenaje de ese país.
se trata de un paso que requiere que los actores locales hagan suyo el proceso, y también adecuar las medidas a las necesidades y posibilidades de cada ciudad y un compromiso político sostenido que asegure el apoyo de los gobiernos locales.

- Un enfoque integral para el proceso de adaptación facilita la prevención y la reducción del riesgo de desastres y la reducción de la vulnerabilidad, el fomento de la adaptación al cambio climático y el desarrollo local. El énfasis en este tipo de enfoques empieza a ser recurrente en la bibliografía de organizaciones internacionales que trabajan en la reducción del riesgo de desastres, en las organizaciones que apoyan la adaptación al cambio climático y en parte de la literatura científica. Desgraciadamente, su puesta en práctica no se ha integrado en las estrategias y los planes de desarrollo urbano. Por ejemplo, no aparecen de manera explícita en los planes de desarrollo de las ciudades arriba mencionadas. La gestión explícita de un enfoque integral contribuye a que la comunidad identifique los beneficios del proceso de adaptación a corto, mediano y largo plazo.

- Las organizaciones internacionales subrayan la importancia de los planes participativos para el diseño y la puesta en práctica de la prevención y reducción del riesgo de desastres climáticos y la adaptación al cambio climático. Las experiencias urbanas que pueden encontrarse en la bibliografía permiten reconocer la dificultad para conseguir y mantener la participación en esos procesos de un amplio espectro de actores urbanos. Asimismo, apuntan a la importancia de prestar atención a este aspecto desde los primeros pasos del diseño de la estrategia.

- La lectura del capítulo permite al lector identificar una diversidad de enfoques para diseñar estrategias y medidas de adaptación al cambio climático. Las sugerencias, las guías y los lineamientos que ofrecen las organizaciones internacionales y la comunidad científica internacional son herramientas flexibles orientadas a fortalecer la capacidad analítica de los actores que participan en el proceso de adaptación. Dado que la adaptación es contextual y depende de las condiciones y necesidades de cada ciudad, no puede sugerirse un modelo universal para diseñar dicho proceso.

Bibliografía

Adger, N. y otros (2009a), “Are there social limits to adaptation to climate change?”,* Climate Change*, vol. 93, N° 3-4, Springer.

____ (2010b), *Natural Hazards, Unnatural Disasters. The Economics of Effective Prevention*, Washington, D.C.

Convención Marco de las Naciones Unidas sobre el Cambio Climático (2007), *Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries*, Bonn.

CRID (Centro Regional de Información sobre Desastres para América Latina y el Caribe) (2009), *Catálogo de herramientas y recursos de información para el fortalecimiento de capacidades locales de respuesta*, San José.

FCM (Federation of Canadian Municipalities) (2009), *Municipal Resources for Adapting to Climate Change*, Ottawa, Ontario.

____ (2008), Análisis de vulnerabilidad y capacidad. Caja de herramientas con fichas de referencias, Ginebra.

____ (2006), ¿Qué es el AVC? Introducción al análisis de vulnerabilidad y capacidad, Ginebra.

Foster, J., S. Winkelman y A. Lowe (2011), Lessons Learned on Local Climate Adaptation from the Urban Leaders Adaptation Initiative, Washington, D.C., Center for Clean Air Pollution.

Hardoy, J., D. Mitlin y D. Satterwaite (1992), Environmental Problems in Third World Cities, Londres, Earthscan.

Hogan, R. (2003), The Failure of Planning, Columbus, Ohio State University Press.

Hulme, M. y otros (eds.) (2009), *ADAM Adaptation and Mitigation Strategies: Supporting European Climate Policy*, Norwich, Tyndall Centre for Climate Change Research, Universidad de East Anglia.

____ (2008), Strategic Environmental Assessment and Adaptation to Climate Change, Paris.

ONU-Hábitat (Programa de las Naciones Unidas para los Asentamientos Humanos) (2012), Estado de las ciudades de América Latina y el Caribe. Rumbo a una nueva transición urbana, Nairobi.

____ (2011b), Local Leadership for Climate Change Action, Nairobi.

PNUD (Programa de las Naciones Unidas para el Desarrollo) (2012), Plan climático de la Región Metropolitana de Uruguay, Montevideo.

____ (2009), “Learning to adapt to climate change in urban areas. A review of recent contributions”, *Current Opinion in Environmental Sustainability*, vol. 1, N° 2, Amsterdam, Elsevier.

V. Desarrollar capacidad de respuesta urbana a la variabilidad y el cambio climático

Patricia Romero-Lankao, Natalia Brutto, Manyu Chang, Jorgelina Hardoy, Rafael D’Almeida Martins y Kerstin Krellenberg

A. Introducción

Un número creciente de autoridades urbanas de América Latina, y también a nivel mundial, están diseñando políticas de mitigación y adaptación al cambio climático (Satterthwaite y otros, 2007; Romero-Lankao y Dodman, 2011; Hoornweg y otros, 2011). El fenómeno ha despertado un creciente interés por identificar los actores, las estrategias y las motivaciones que impulsan los trabajos y las medidas adoptadas a nivel urbano a manera de respuesta al cambio climático (Bulkeley, 2010; Carmin, Nadkarni y Rhie, 2012). A pesar de su influencia en la eficacia de las políticas, los factores determinantes y los atributos de la capacidad institucional para implementar políticas climáticas son menos conocidos. En general, la capacidad se refiere a los recursos, los activos y las opciones que los actores gubernamentales y no gubernamentales tienen a su alcance para reducir los gases de efecto invernadero (GEI), mitigar riesgos y adaptarse a la variabilidad y el cambio climáticos (Tompkins y Adger, 2005; Burch y Robinson 2007; Martins y Ferreira 2011a).

Comprender la capacidad institucional de respuesta tiene particular importancia en América Latina donde, además de hacer frente a riesgos adicionales derivados de la variabilidad y el cambio climáticos, las ciudades se enfrentan ya hoy a fuertes retos en materia de desarrollo, si bien no concretamente vinculados a la transición urbana que actualmente se constata en África y algunos países asiáticos, pues en 2010, el 79,4% de la población de América Latina ya vivía en urbes. Los desafíos en el ámbito de la gestión tienen su origen en los modelos de crecimiento urbano y de ocupación del territorio de las últimas décadas que, al redefinir la función económica y la forma urbana (véanse los capítulos III y IV), han incidido en los hábitos de uso de energía y en las emisiones, por un lado, y en los determinantes de la vulnerabilidad y el riesgo, por el otro (véanse los capítulos III y IV; Hardoy y Romero-Lankao, 2011).
actores urbanos disponen, para reorientar esos hábitos, de una serie de posibilidades que, en gran medida, son una función de la capacidad institucional para diseñar e implementar políticas efectivas e incluyentes.

En el presente capítulo se proporciona al lector una perspectiva integrada y comparativa de las respuestas a la variabilidad y el cambio climático en áreas urbanas, de los determinantes y los atributos de la capacidad institucional de respuesta y del papel real y potencial de la planificación urbana a la hora de desarrollar políticas climáticas. A fin de lograr ese objetivo, los autores analizan aquí, valiéndose de un marco analítico que identifica los componentes de la capacidad de respuesta institucional y permite comparar las políticas climáticas de siete ciudades latinoamericanas, la gestión del cambio climático en las ciudades de Buenos Aires y Rosario (Argentina), São Paulo y Río de Janeiro (Brasil), Manizales (Colombia), Santiago (Chile) y Chetumal y México D.F. (México). Asimismo, emplean un análisis de casos de estudio, entrevistas realizadas por ellos mismos a actores gubernamentales y no gubernamentales y fuentes de información secundarias de dichas ciudades, con la finalidad de rastrear el desarrollo político-económico de la capacidad de respuesta institucional: las políticas, los actores-redes participantes, la eficacia del marco jurídico, el uso de la información y el nivel de participación.

A pesar de que las ciudades mencionadas comparten un conjunto de procesos de urbanización, de reformas estatales, de políticas urbanas y ambientales y de gestión de desastres, existen diferencias entre ellas. Por ejemplo, se enfrentan a combinaciones específicas de amenazas climáticas; las condiciones y determinantes sociales y ambientales de las emisiones, el riesgo y la vulnerabilidad se articulan de manera específica en cada ciudad, y cada una de ellas cuenta con una configuración urbana y política específica (Krellenberg y otros, 2013; Romero-Lankao y otros, 2012; Romero-Lankao, Qin y Borbor-Cordova, 2013). La presencia local de grupos y redes científicas multinacionales, como el Consejo Mundial de Alcaldes sobre el Cambio Climático, el C-40 e ICLEI, y la participación de actores locales en foros y organizaciones latinoamericanas y transnacionales han influido en la introducción del cambio climático en la agenda pública de estas ciudades. Comparar las experiencias de gestión de estas ciudades nos permite analizar la capacidad institucional de respuesta y explorar el papel real y potencial de la planificación urbana y del territorio en el desarrollo de políticas. En este capítulo, los autores intentan dar forma a un contexto útil para identificar el papel de la gobernanza, de las organizaciones y los actores, con la finalidad de pensar y repensar opciones de sostenibilidad urbana.

B. Definir el problema y diseñar las medidas de política

El diseño de las medidas de política resulta de la construcción discursiva del problema de política, a saber, el cambio climático; en otras palabras, del diagnóstico, hecho por los tomadores de decisiones gubernamentales y no gubernamentales, del asunto de política (cambio climático) y del acento que se pone en una dimensión dada del asunto de política –mitigación, energía, desastres– o en un conjunto de causas y soluciones en lugar de otro. Por ejemplo, en México. D.F. y São Paulo, el cambio climático tiende a atribuirse a un modelo de desarrollo y de uso de la energía que requiere “soluciones energéticas con menor intensidad de carbono” (GDF, 2008, pág. 25; Lucon y Goldenberg, 2010). Las primeras políticas climáticas urbanas se centraron en la contaminación del aire provocada por altas emisiones GEI (Romero-Lankao, 2007; Lucon y Goldenberg, 2010). Para gestionarlas, las autoridades introdujeron el programa Hoy no Circula, que en México, D.F. limita la circulación del 20% de los automóviles un día a la semana, y en la zona céntrica de São Paulo limita la circulación durante las horas punta (Romero-Lankao, 2007; Puppim de Oliveira, 2009). Como se verá más adelante, la gestión de riesgo en términos de costos y conflictividad ha sido un tema prevalente en las ciudades (Aguilar y Santos 2011; Krellenberg y otros, 2013).

El diseño de políticas climáticas se realiza también sobre la base de experiencias de gestión anteriores. Por ejemplo, mientras que las medidas climáticas implementadas en Manizales y Chetumal enmarcan sus respuestas en la experiencia con la gestión de riesgos de desastres y el ordenamiento
territorial (Hardoy, 2013; Hardoy y Velázquez Barrero, 2014; Hardoy y otros, 2014), México, D.F., Bogotá y São Paulo han diseñado políticas climáticas con medidas encaminadas a mejorar los combustibles, el sistema de transportes, la gestión de la calidad del aire y la gestión del riesgo (Romero-Lankao, 2007; Lucon y Goldemberg, 2010; Martins y Ferreira, 2011b; Lampis y Fraser, 2012; Krellenberg y otros, 2013).

A pesar de que en Rosario (Argentina), las respuestas urbanas al cambio climático no están explícitamente diseñadas con un enfoque centrado en el cambio climático, se han apoyado en tres pilares, a saber: casi dos décadas de políticas de planificación urbana, de mejora de los servicios (sobre todo, en los ámbitos de la salud y la reducción del riesgo de inundaciones) y de descentralización. Así, dichas respuestas permiten la participación y el desarrollo de capacidades ciudadanas (Hardoy y otros, 2013).

Por su parte, Manizales ha elaborado una agenda (Biomanizales) y un plan ambiental (Bioplan) que han guiado el desarrollo urbano durante las dos últimas décadas (Velásquez, 1998 y 2011). Además, la gestión de riesgos de la ciudad se basa en un trabajo integral de identificación y monitoreo de riesgos de desastres y de planificación ambiental y urbana, que incluye programas de relocalización de población en zonas de riesgo por desplazamiento o inundaciones; la creación de una red de monitoreo hidrometeorológico y una red de ecoparques; la zonificación urbana apropiada; el programa Guardianas de la Ladera; trabajos de estabilización y control de las laderas; los observatorios ambientales, que monitorean el avance de diferentes indicadores socioambientales; los semáforos ambientales, que representan gráficamente los resultados del monitoreo de las condiciones físicoambientales locales, y un sistema colectivo de seguros. En resumen, Manizales es una de las ciudades con mayor capacidad institucional de gestión local del riesgo, pues integra dicha gestión con la planificación del desarrollo urbano.

Las ciudades latinoamericanas se encuentran en distintas etapas del proceso de institucionalización de la agenda climática. México, D.F. puso en marcha en 2000 la Estrategia Climática Local y cuenta con un Programa de Acción Climática 2008-2012 (PAC) y con la Ley de mitigación y adaptación al Cambio Climático (2011) que, como se ha señalado, apuntalan medidas anteriores de gestión en los ámbitos de la energía y de la calidad del aire y forman parte de una “Agenda Verde” (Romero-Lankao y otros, 2013a y 2003b). A diferencia de México D.F., en otras ciudades las medidas climáticas se encuentran aún en sus etapas iniciales. Santiago, por ejemplo, desarrolló un Plan Regional de Adaptación al Cambio Climático (Krellenberg y otros, 2013) en el contexto del proyecto Clima Adaptación Santiago, que se encuentra en fase de aprobación e implementación, mientras que Colombia ya cuenta con el Plan Nacional de Adaptación al Cambio Climático (PNACC) y el Sistema Nacional de Cambio Climático (SNCC), que articula y coordina las diferentes iniciativas gubernamentales (a nivel nacional y subnacional), sectoriales y comunitarias. A escala local, la Ciudad Autónoma de Buenos Aires ha definido el Plan de Acción Buenos Aires 2030, fuertemente enfocado en la mitigación (Krellenberg y otros, 2013).

RECUADRO V.1

¿POR QUÉ HAY MÁS MEDIDAS DE MITIGACIÓN QUE DE ADAPTACIÓN?

A pesar de su importancia, la vulnerabilidad y la adaptación al cambio climático son temas secundarios comparados con la mitigación, y no solo en América Latina, sino a nivel internacional (ONU-Hábitat, 2011). Esto se debe, en gran parte, a ciertas particularidades intrínsecas de las medidas que ambos temas requieren. Las medidas de mitigación se diferencian de las de adaptación en lo relativo a la escala espacial, la escala temporal y los sectores involucrados.

Las medidas de mitigación exigen estrategias orquestadas y coordinadas a escala mundial, ya que la atmósfera es única y no existen barreras físicas que frenen el avance de los GEI. Las medidas de adaptación son específicas de cada país, estado y localidad, pues los impactos climáticos adquieren formas específicas en cada nivel. Los beneficios de las medidas de mitigación tienden a ser globales, mientras que los de la adaptación tienden a ser locales (Romero-Lankao, 2012).
Recuadro V.1 (conclusión)

En cuanto a la escala temporal, las medidas de mitigación, dada la inercia del sistema climático, tienen un efecto a largo plazo, mientras que las medidas de adaptación, como la reducción de la vulnerabilidad, poseen efectos a corto y mediano plazo.

En cuanto a los sectores involucrados, la mitigación prioriza los sectores emisores de GEI (energía, transportes, industria, residuos), mientras que la adaptación da prioridad a los sectores social y ambientalmente vulnerables, como las poblaciones en asentamientos irregulares, los recursos hídricos, las zonas costeras, la producción de alimentos y la sanidad. Entre los sectores relevantes tanto para la mitigación como para la adaptación, sobresalen la agricultura, la silvicultura, el transporte y la energía.

A lo mencionado anteriormente se suman las implicaciones de equidad de la relación causa-efecto característica del calentamiento mundial. Los países y los sectores sociales más ricos son responsables, tanto actual como históricamente, de una mayor proporción de emisiones per cápita. Además, cuentan con más recursos y opciones (materiales, financieros y tecnológicos); en otras palabras, con capacidad de respuesta, y eso los hace menos vulnerables. Por su parte, los países y sectores sociales más pobres, de industrialización tardía y con menores niveles de consumo, son responsables, tanto actual como históricamente, de una proporción mucho menor de emisiones per cápita. Sin embargo, tienden a ser los más vulnerables al cambio y la variabilidad climáticas, a tener menos recursos y opciones (infraestructura y servicios básicos, por ejemplo) y a ser objeto de procesos de urbanización desordenada y excluyente.

Fuente: Elaboración propia.

Las ciudades de Rosario, México, D.F., y Manizales, y el municipio de San Fernando en Buenos Aires ilustran una tendencia común a varias urbes latinoamericanas, pues desarrollan y apuntalan sus capacidades de gestión del cambio y la variabilidad climáticas no solo -y no tanto- con políticas de cambio climático propiamente dichas, sino sobre una base de años de políticas de desarrollo urbano y gestión del territorio y del riesgo enfocadas en la mejora de las condiciones de vida y la provisión de servicios e infraestructuras, sobre todo en los ámbitos de la salud, la vivienda y los sistemas de alerta y emergencias (Hardoy, 2013; Hardoy y Velázquez Barrero, 2014; Velázquez, 2011; Martins y Ferreira, 2011c; Romero-Lankao y otros, 2013a y 2013b). São Paulo, por ejemplo, ha creado sinergias entre sus medidas climáticas y otras políticas (transportes, gestión de residuos sólidos, control de la contaminación del aire, entre otras). En la provincia de Buenos Aires, el partido de San Fernando elaboró sus políticas de gestión de riesgo mediante programas de desarrollo tendientes, en rasgos generales, a mejorar las condiciones habitacionales de la población de escasos recursos (véase el recuadro V.2). Esta manera de responder al cambio climático permite trabajar directamente con planes, programas y políticas ya existentes que pueden facilitar la implementación de medidas concretas a corto plazo.

RECUADRO V.2
SAN FERNANDO (PROVINCIA DE BUENOS AIRES):
UN EJEMPLO DE GESTIÓN LOCAL DEL RIESGO

El partido de San Fernando está situado en el noreste del área metropolitana de la Ciudad Autónoma de Buenos Aires, entre los partidos de San Isidro y Tigre. Si se consideran las características de la población, se constata la existencia de un gradiente en sentido este-oeste que produce lo que podría llamarse un tobogán de desarrollo. Si se emplean diversos indicadores relacionados con las infraestructuras, la situación económica, la educación, la seguridad social y sanitaria, el sector de Virreyes es el área menos desarrollada del partido. A medida que uno se acerca hacia el este, los indicadores mejoran (véase el siguiente diagrama).

122
Recuadro V.2 (continuación)

A fin de solucionar este conjunto de problemas urbano-ambientales, el municipio implementó un proyecto integral a través de políticas nacionales y provinciales, por ejemplo: un proyecto de urbanización y reordenamiento urbano apoyado por el Programa de Mejoramiento de Barrios (ProMeBa), el programa Mejor Vivir y el Subprograma de Urbanización de Villas y Asentamientos Precarios. Todos los programas tienen objetivos específicos, pero, en líneas generales, tendientes a mejorar las condiciones habitacionales de la población de escasos recursos.

Si bien los programas arriba mencionados no son exactamente una respuesta al cambio climático, tienen en cuenta la variable ambiental como uno de sus ejes. Además, el proyecto integral de desarrollo urbano de San Fernando arrojó como resultado el fortalecimiento de las capacidades de la comunidad. Los gestores locales contaron con la población como un aliado, retroalimentando así un proceso de organización y empoderamiento. En segundo lugar, el proyecto integral llevó aparejada una disminución de la vulnerabilidad (no solo en términos materiales, sino también en lo relativo a la capacidad de respuesta de la comunidad ante diferentes sucesos). Los autores del presente capítulo pudieron observar esas capacidades durante su trabajo de campo en San Fernando. Aunque los entrevistados desconocían la existencia de un sistema oficial de respuesta a las “sudestadas” y, si lo conocían, no sabían cómo utilizarlo, sus respuestas se apoyaron en las redes y organizaciones vecinales y en el conocimiento personal de vecinos del lugar, es decir, en el capital social de la comunidad, un determinante clave de la capacidad de respuesta (Romero-Lankao y otros, 2013a y 2013b).

No obstante, los retos a que se enfrenta este tipo de proyectos son numerosos. Entre los principales, cabe citar la necesaria intervención gubernamental en la construcción de obras comunes (por ejemplo, la protección contra inundaciones relacionadas con las sudestadas) y la capacidad de sostener el proceso.
Recuadro V.2 (conclusión)

independientemente de los cambios en las administraciones gubernamentales. Otro desafío para la gestión local es señalar, tanto a los tomadores de decisiones como a los habitantes, los posibles fenómenos que puede acarrear el cambio climático aun cuando se trate de un proceso incierto.

Pero no todos son retos; también hay oportunidades. El territorio de San Fernando es relativamente pequeño comparado con otros municipios. Dado que el número de habitantes también es exiguo, es posible trabajar con ellos de una manera más directa, pues la escala lo permite. Los procesos de urbanización han abierto un canal de comunicación entre el gobierno local y la comunidad. La administración, que se mostró receptiva a las necesidades de la población local, ha iniciado un proceso de participación que permite considerar este proyecto como un proceso de empoderamiento. La planificación participativa ha brindado a la población herramientas para reconstituir algunos lazos de solidaridad y legitimidad en la relación entre la comunidad y el Estado. Este proceso allanó el terreno para poner en marcha futuros proyectos de mitigación y adaptación al cambio climático. La comunidad ha incorporado el territorio en su discurso y ha comprendido que el medio ambiente es otro de los ejes que hay que tener en cuenta a la hora de pensar en el desarrollo. Por irónico que parezca, la actual administración de San Fernando (que fue electa a fines de 2011 y reemplazó a la administración que diseñó el proyecto integral) dejó de apoyar los programas de presupuesto participativo, ya no considera la intervención y el reordenamiento urbanos como políticas de inclusión y reducción de la vulnerabilidad y ha dejado a las comunidades sin el apoyo público que permitiría abordar y erradicar las causas profundas de su vulnerabilidad. Sin embargo, con financiamiento del Centro Internacional de Investigaciones para el Desarrollo (CIID) y ejecutado por el Instituto Internacional de Medio Ambiente y Desarrollo – América Latina (IIED – AL), a partir del trabajo iniciado con el proyecto ADAPTE, se está trabajando con la comunidad en la identificación de riesgos y la organización comunitaria necesaria para fortalecer las capacidades de prevención y respuesta a la variabilidad y el cambio climático. Por ejemplo, se está lanzado un fondo de microcréditos (que se otorgan en materiales) gestionado por una mesa barrial y que está destinado a la realización de pequeñas intervenciones en las viviendas que ayuden a reducir el impacto de las sudestadas.

Fuente: Elaboración propia.

C. Descentralización, gobiernos locales y cambio climático

En las últimas décadas, muchos países de la región descentralizaron no solo una serie de competencias, sino también, en algunos casos, recursos y poder de decisión, que transfirieron a los gobiernos estatales y locales (Satterthwaite y otros, 2007; Martins y Ferreira, 2011a; Romero-Lankao y Gunther, 2011). En algunos países (Brasil, México) la descentralización significó también procesos de transición democrática; en otros casos fue impulsada por la necesidad de reducir el tamaño del gobierno central, fomentar aún más la participación ciudadana y mejorar la rendición de cuentas en la formulación de las políticas públicas. El proceso se sustenta en el supuesto de que los gobiernos locales pueden hacer frente con mayor eficiencia a los retos de provisión de la infraestructura urbana y los servicios públicos esenciales para el bienestar de la población y regular y controlar las acciones de los individuos y las empresas a nivel local (Satterthwaite y otros, 2007).

En el contexto de la descentralización, los gobiernos locales adquirieron o conservaron ciertas competencias de relevancia para las políticas de adaptación y mitigación. Los gobiernos son responsables, en distintos grados que dependen de la estructura administrativa de cada país (véase la sección V.4.1), de:

i) La administración financiera y contable del presupuesto municipal, de parte o de todos sus ingresos, y de la gestión de parte o de todos sus impuestos.

ii) El diseño y la construcción de algunas obras públicas y el mantenimiento de los
espacios públicos.

iii) El ejercicio de cierto control o cierta regulación sobre el uso de las fuentes de energía, como la electricidad y el gas.

iv) Los componentes del desarrollo urbano, como la regulación del uso del suelo, la zonificación del espacio público, el registro de propiedades y el urbanismo.

v) Parte o la totalidad de la gestión de la salud y el saneamiento, es decir, la extracción, la distribución y el tratamiento de agua potable; el control de la contaminación; la recolección y el tratamiento de residuos sólidos; el saneamiento y la limpieza de zonas públicas, así como los servicios médicos y de emergencia.

vi) Parte o la totalidad de las políticas sociales (viviendas populares, escuelas, espacios para jóvenes).

vii) La protección civil y la atención de emergencias: respuestas a desastres, bomberos y ambulancias.

viii) La administración pública y los recursos humanos (Martins y Ferreira, 2011c).

La gestión efectiva de esas competencias puede permitir a los gobiernos urbanos, en coordinación con los otros niveles de gobierno, incidir directamente, por ejemplo, en el consumo de energía, en la reducción de las emisiones GEI, en la gestión del riesgo y la vulnerabilidad de una parte importante de su población mediante la gestión del territorio, en los sistemas de alerta temprana, y en la gestión del riesgo con las comunidades (Martins y Ferreira, 2011a y 2011c).

Las políticas y medidas de mitigación y adaptación pueden también aportar mejoras significativas en los otros ámbitos de política arriba mencionados. Satterthwaite y otros (2007) sostienen que es difícil diseñar un programa eficaz de respuesta al cambio climático, particularmente en las zonas de adaptación y riesgo, sin un gobierno local competente, capaz y receptivo a las necesidades de las poblaciones de mayor riesgo. Pero ¿en qué consiste la capacidad institucional de respuesta y cómo opera en las ciudades latinoamericanas?

D. La capacidad institucional de respuesta

A pesar de que la capacidad institucional de ejecución de políticas climáticas ya ha sido objeto de interés (Burch y Robinson, 2007; Klein y otros, 2007), gran parte de los estudios sobre la capacidad de respuesta proceden del ámbito de la adaptación y se han centrado en identificar obstáculos (Moser y Ekstrom, 2011) y atributos genéricos de gobernanza vinculados a políticas de adaptación eficaces (Raadgever y otros, 2008; Engle y Lemos, 2010; Measham y otros, 2011). Sin embargo, la distinción entre la capacidad de adaptación y de mitigación no refleja la realidad de los tomadores de decisiones, que dan prioridad a las políticas de desarrollo urbano y sectorial y diseñan y ejecutan las políticas climáticas en general.

La capacidad institucional de respuesta se relaciona con los recursos financieros, humanos y políticos que los actores gubernamentales y no gubernamentales pueden utilizar para reducir los GEI y responder a la variabilidad y el cambio climáticos (Tompkins y Adger, 2005; Burch y Robinson, 2007). La noción de capacidad institucional es una herramienta útil en la medida en que se basa en el reconocimiento de que las capacidades de adaptación y mitigación están determinadas con frecuencia por los mismos factores (Yohe, 2002; Klein y otros, 2007; Burch y Robinson, 2007). Por ejemplo, el personal que una ciudad puede dedicar a las medidas para combatir el cambio climático (una fuente de la capacidad de respuesta) está determinado, en gran parte, por el grado en que esas medidas pueden
beneficiar tanto a las políticas de transporte, vivienda y ordenamiento territorial existentes, como a la posición económica y estratégica de la ciudad de que se trate.

En este contexto se aplica un marco analítico desarrollado en Romero-Lankao y otros (2013a) para identificar tanto los actores, problemas y medidas de política climática como los componentes y determinantes de la capacidad institucional de respuesta a nivel urbano (véase el diagrama V.1). En primer lugar aparece el problema o asunto de política (el cambio climático) sobre el que los actores urbanos, gubernamentales y no gubernamentales actúan o deciden que deberán actuar. Esos actores tienen intereses, necesidades y visiones diversas y, a veces, contradictorias (Pelling y Manuel-Navarrete, 2011) y compiten, colaboran y establecen alianzas en torno al problema climático y las medidas de política más adecuadas para gestionarlo. Los actores inciden en diversos grados –vinculados a sus recursos y su poder– en las decisiones e instituciones del gobierno, en las barreras y oportunidades con que tropiezan el diseño y la ejecución de políticas climáticas y en las políticas propiamente dichas. Las instituciones o estructuras de gobernanza definen los incentivos, las restricciones, los costos y las oportunidades de los actores; en una palabra, la capacidad institucional de respuesta (Ostrom, 1990; Brooks Adger y Kelly, 2005; Bulkeley, 2010; Engle y Lemos, 2010). En las siguientes secciones se describen cuatro componentes clave de la capacidad institucional de respuesta:

i) Las estructuras administrativas y redes institucionales, es decir, el tipo de relaciones y el nivel de cooperación y coordinación entre actores. Por su carácter transversal, las políticas climáticas requieren la cooperación y la coordinación entre los siguientes sectores y niveles de gestión pública involucrados y afectados: individuos, empresas privadas, sociedad civil, organismos públicos locales, regionales, nacionales e internacionales (Adger, Arnell, y Tompkins, 2005). Según se dice, cuanto mayor es el grado de coordinación y cooperación entre los actores relevantes, mayor es la capacidad institucional de respuesta, menores son los vacíos de política y mayores las opciones de creación de capacidades (Corée-Morlot y otros, 2009).

ii) El marco jurídico delimita las responsabilidades, los recursos, el poder de gestión y los mecanismos de planificación de los organismos gubernamentales (Measham y otros, 2011). La capacidad institucional de respuesta se ve fortalecida cuando las leyes y reglamentos delinean claramente los mandatos, los derechos y las responsabilidades de los actores; cuando incluyen principios pertinentes de equidad y participación ciudadana, cuando fomentan el acceso a la información, el intercambio de información y la comunicación entre los actores y cuentan con salvaguardas para abordar con flexibilidad situaciones imprevistas e inciertas como las que cabe esperar del cambio climático (Raadgever y otros, 2008).

iii) Los procesos mediante los cuales la información científica se produce y se distribuye son otro componente fundamental de la capacidad institucional (Mukheibir y Ziervogel, 2007), sobre todo cuando la información pertinente se emplea para apoyar procesos de aprendizaje social (Engle y Lemos, 2010; Yohe, 2002). Dado que las características particulares del cambio climático difieren en muchos aspectos de las características de otros asuntos de política (véase el capítulo II), existen nuevos tipos de información y mecanismos para la transmisión de información que se convierten en requisitos para la toma de decisiones. Sin embargo, más que un mero ejercicio técnico o tecnocrático, la información sobre los riesgos y opciones para responder al cambio climático tiene una dimensión política dada, entre otros factores, por el poder que algunos actores tienen a la hora de definir y diagnosticar el cambio climático, las políticas de gestión más pertinentes y las estrategias para gestionar asuntos relativos a la equidad social (Betsill y Bulkeley, 2007).

iv) Los mecanismos de participación, que incluyen instrumentos como la planificación participativa, las consultas públicas, las audiencias públicas y los comités de trabajo, inciden en la capacidad institucional de diversas maneras: facilitando la negociación entre actores y la articulación de políticas consensuadas; empleándolos para zanjar controversias;
contribuyendo a empoderar al ciudadano común, y permitiendo a las comunidades urbanas crear capacidades de autorganización para hacer frente de una manera más eficaz a asuntos complejos como el cambio climático (Koontz y Johnson, 2004).

**DIAGRAMA V.1
CAPACIDAD INSTITUCIONAL DE RESPUESTA: MARCO ANALÍTICO**

1. **Redes y estructuras administrativas**

Las estructuras administrativas de gestión, dadas por el tipo de relaciones (redes institucionales) entre los niveles de gobierno de cada ciudad, inciden en la capacidad institucional de respuesta. En general, cuanto mayor es el alineamiento político entre los distintos niveles de gobierno, mayores son las posibilidades de coordinación y el apoyo y los recursos transferidos de un nivel (nacional) a otros (estatal y local). Por ejemplo, en 2012 el municipio de Othón Blanco (México), con cabecera en la ciudad de Chetumal, estaba gobernado por el Partido Acción Nacional (PAN), en aquel entonces encargado de administrar el Estado de Quintana Roo y el país (Hardoy y otros, 2014). En Río de Janeiro, en 2007, los gobiernos federal, estadal y municipal se alinearon políticamente para lograr una mayor coordinación de acciones, como la transferencia de fondos a la municipalidad. Aunque en Rosario (Argentina) solo en 2007 empezó a constatarse una concordancia entre el nivel local y el provincial, los vínculos con otros niveles de gobierno han sido complejos y la ciudad ha recibido poco apoyo financiero del nivel nacional (Hardoy y Ruete, 2013).

Las estructuras administrativas de algunas ciudades de la región tienden a ser centralizadas, fragmentadas y carentes de coordinación. Por ejemplo, a pesar de que la región metropolitana de Santiago se rige por un sistema unitario con políticas diseñadas en el nivel nacional, es administrada por subsecretarías regionales de los ministerios nacionales, un intendente, seis gobernadores y 52 comunas, cada una con un alcalde propio, que se enfrentan a diversos retos de coordinación. Aún más compleja es la situación de la Ciudad Autónoma de Buenos Aires y de México D.F. En el ámbito del área metropolitana de Buenos Aires intervienen tres jurisdicciones: la nacional, la de la provincia de Buenos Aires –que
comprende el continuo urbano llamado “zona conurbana” – y la Ciudad Autónoma de Buenos Aires, capital federal del país (Krellenberg otros, 2013). El área metropolitana de México, que se rige por un sistema federal con políticas diseñadas en los niveles nacional y estatal, también es administrada por múltiples entidades gubernamentales: el gobierno federal con sede en el Distrito Federal, que funciona como un cuasi-estado con su propio gobernador, a cargo de ocho millones de capitalinos, y cuenta con 16 delegaciones; el Estado de México, a cargo de los 12 millones de capitalinos restantes, con su gobernador y 35 municipios en el conurbano (Romero-Lankao y otros, 2013a). A pesar de las diferencias administrativas, la falta de coordinación entre niveles de gobierno es común a las tres ciudades y, en el caso de México D.F., se ve agravada por el hecho de que los gobiernos municipal, federal, del Distrito Federal y del Estado de México se encuentran en manos de tres partidos diferentes (PRI, PAN y PRD).

No obstante, la región experimentó un proceso de devolución de competencias a las autoridades locales y en algunos países las también llamadas reformas neoliberales o del Estado no cambiaron los elementos clave que confieren a las estructuras de gobierno un carácter centralizado. Por ejemplo, en México, algunas competencias se devolvieron a los niveles estatal y local. La descentralización y la apertura democrático-electoral ofrecieron oportunidades que las autoridades del Distrito Federal aprovecharon para implementar, en materia de cambio climático, unas medidas que solo afectan al Distrito Federal y no a la zona metropolitana de la capital del país. A pesar de una creciente autonomía, estados y municipios siguen dependiendo, y mucho, de los recursos transferidos desde el gobierno federal (Romero-Lankao y otros, 2013a y 2013b). La falta de recursos financieros destinados a la gran cantidad de problemas que hay que resolver es común a muchos gobiernos locales. Ante esta situación, las autoridades urbanas han solicitado el apoyo de fuentes de financiamiento internacionales. Por ejemplo, los gobiernos de México, D.F., y del municipio de Othón Blanco han recurrido, respectivamente, al Banco Mundial (Romero-Lankao y otros, 2013a y 2013b) y a la apertura de una representación en Washington (Hardoy y otros, 2014) como estrategias que les permitieran contar con fuentes para el financiamiento de proyectos.

La descentralización arrojó resultados relativamente mejores en algunas ciudades de países como el Brasil y Colombia. Por ejemplo, los avances logrados en Manizales se deben en buena medida a la política de descentralización llevada a cabo en Colombia, que el municipio de Manizales supo aprovechar. Sin embargo, no ha ocurrido lo mismo en el caso de municipios colombianos y brasileños con menor capacidad de gestión, que se vieron superados por las competencias que les transfirieron (Martins, Vaz y Caldas, 2010; Martins y Ferreira, 2010).

2. Marco jurídico

Un marco jurídico nacional apropiado suele favorecer el desarrollo de políticas de cambio climático a nivel local, constituyéndose en el soporte sobre el que cada ciudad puede desarrollar sus estrategias particulares de mitigación y adaptación. La Argentina no ha logrado grandes avances en el marco jurídico en que los gobiernos urbanos locales pueden introducir medidas de mitigación y adaptación. En Chile, la legislación pertinente procede del gobierno central (sistema unitario) y corresponde al Ministerio de Medio Ambiente, creado en 2010, formular e implementar las políticas de cambio climático y los planes de acción en coordinación con los demás niveles de gobierno (artículo 70 h) de la ley 20.417).

México presenta una situación jurídica ligeramente distinta. Como se ha mencionado anteriormente, los estados libres y soberanos (sistema federal) se someten a las reglas que impone la Constitución, un orden jurídico supremo que crea dos ordenamientos jurídicos subordinados y coexistentes: el nacional y el estatal (Rosas Huerta, 2011). Esa estructura jurídica ha abierto oportunidades a estados y municipios para diseñar políticas desde el nivel local. Veracruz, México, D.F., Nuevo León, Guanajuato, Puebla, Tabasco y Chiapas han desarrollado sus respectivos programas estatales de acción ante el cambio climático (PEACC), mientras que Baja California Sur, Hidalgo y Campeche se encuentran ya en la etapa final y 17 estados se hallan todavía en la etapa de planificación y desarrollo (Rosas Huerta, 2011).
No obstante, el actual sistema federal ofreció a México, D.F. (es decir, al Gobierno del Distrito Federal) una oportunidad única para crear su propia legislación climática, anterior incluso a la ley nacional del clima 2012, en virtud de la cual el ejecutivo federal retiene poderes jurídicos significativos sobre la vida política del Distrito Federal, aprueba su límite de endeudamiento e incide en el poder del DF para emitir instrumentos de mercado (Rosas Huerta, 2011).

En el Brasil, la Política Nacional de Cambio Climático, aprobada en 2009, establece el marco nacional en que han de insertarse las políticas climáticas. En 2012 se completaron las políticas sectoriales para la mitigación y la adaptación, siendo prioritarias las medidas de mitigación. Alrededor de diez de los 23 estados federados del Brasil cuentan con políticas de cambio climático, algunas más detalladas que otras, aprobadas por sus respectivas asambleas legislativas. Los estados también tienen sus foros estaduales de cambio climático, que desempeñan un papel análogo al del Foro Brasileño. A nivel municipal, son pocas las ciudades que cuentan con leyes sobre cambio climático y entre las capitales con mayor influencia económica cabe citar Río de Janeiro, São Paulo, Belo Horizonte y Curitiba.

En resumen, mientras que ciudades como Santiago y Rosario carecen de legislación climática a nivel nacional, México y el Brasil son líderes, en América Latina, en lo que atañe al desarrollo de legislación y estrategias de mitigación y adaptación al cambio climático. México no solo cuenta con la Comisión Intersecretarial para el Cambio Climático (CICC), cuya función es otorgar un carácter transversal a la planificación e implementación de medidas para combatir el cambio climático. Asimismo, cuenta con la Estrategia Nacional de Acción Climática (ENAC), el Programa Especial de Cambio Climático (PECC 2009–2012) y la nueva Ley general de cambio climático 2012. En el Brasil se han creado la Comisión interministerial sobre el cambio climático para los mecanismos de desarrollo limpio; el Comité interministerial sobre cambio climático, que coordina la elaboración de las políticas nacionales en la materia; el Fondo Nacional para financiar medidas relacionadas con el cambio climático; el Panel Brasileño para la preparación de los estudios científicos sobre el cambio climático en el territorio nacional, y el Foro Brasileño sobre el cambio climático, para la difusión de la temática y el debate con la sociedad civil.

Con todo, no solo la legislación climática incide en la capacidad institucional. Como ilustra la experiencia de Colombia, un marco jurídico apropiado para la gestión de desastres también puede ofrecer oportunidades de adaptación a nivel local. Aunque el país se ha situado a la vanguardia en la gestión de riesgos, el gobierno sancionó recientemente una ley por la que se adopta una nueva política de gestión del riesgo de desastres y el Sistema Nacional de Gestión de Riesgos (ley 1523 de 24 de abril de 2012). En dicha ley se reconocen las falencias del anterior sistema de gestión y se propone, entre otras cosas, que todos los planes de desarrollo incorporen un capítulo sobre la gestión del riesgo de desastres. La nueva ley se centra explícitamente en temas de prevención y opera a través de comités regionales y locales. Como ocurre con otros ámbitos jurídicos, uno de los retos de esta legislación es la implementación, sin la cual será sumamente difícil, para los más de 1098 municipios de Colombia, crear comités locales de gestión de desastres.

Como ocurre en otros países, la legislación colombiana sobre otras áreas de política tiene un peso similar sobre la capacidad institucional para responder al cambio climático (Martins y Ferreira, 2011a y 2011c; Romero-Lankao y otros, 2013b). La Ley de ordenamiento territorial (1997) otorgó fuerza al Plan de Desarrollo Manizales Calidad Siglo XXI y permitió que los temas ambientales quedaran definitivamente establecidos como ejes organizadores de análisis en el desarrollo de los planes urbanos; por su parte, la creación del Ministerio de Medio Ambiente y del Sistema Nacional Ambiental promovió el desarrollo de los perfiles ambientales de las ciudades que dieron apoyo a los proyectos que se llevaron a cabo en el marco de Manizales. En Colombia se aplica a las propiedades rurales y urbanas una sobretasa ambiental que se destina a resolver problemas ambientales locales, lo que permite que ciudades comprometidas y con capacidad para gestionar el medio ambiente, como es el caso de Manizales, puedan contar con recursos específicos para financiar su política ambiental (Hardoy y otros, 2014). En paralelo, Colombia y ciudades como Manizales están fortaleciendo la planificación de la adaptación al

Aunque la legislación otorga a las autoridades estatales y locales la competencia en lo relativo a diversos servicios e infraestructuras, dichas autoridades tienen una influencia más limitada en sectores y determinantes clave de los hábitos de uso de energía, las emisiones y la creación de riesgos y vulnerabilidades; es decir, las autoridades urbanas tienen menor capacidad para gestionar áreas como la energía, los transportes y los cambios en el uso del suelo (OCDE, 2005; Romero-Lankao y otros, 2013a y 2013b). México D.F. y Santiago son un ejemplo de ese fenómeno. En la capital mexicana, las políticas de ordenamiento del territorio definen un límite que divide las zonas de desarrollo urbano, a cargo de la Secretaría de Desarrollo Urbano de las zonas de “amortiguamiento”, conservación y protección contra riesgos, a cargo de autoridades ambientales (GDF, 2007, pág. 23; Aguilar y Santos, 2011; Wigle, 2010). Los reglamentos de Santiago brindan oportunidades más claras y explícitas para el desarrollo urbano (Zunino, 2006). No existe en Santiago -exceptuando la Estrategia de Desarrollo Regional (EDR), que es solamente indicativa, y el Plan Regulator Metropolitano de Santiago (PRMS), que no incorpora de manera explícita al cambio climático- (Krellenberg y otros, 2013) ningún instrumento general para guiar políticas, planes e inversiones territoriales y sectoriales.

No obstante, es responsabilidad de los funcionarios ambientales de México, D.F. y Santiago evitar el crecimiento de la mancha urbana en zonas de protección ecológica y de alto riesgo, incluidos los riesgos relacionados con el cambio climático; estas prioridades compiten por un espacio normativo en una agenda política que promueve un crecimiento económico y un desarrollo capitalista sin cortapisas ni contrapeso ambiental alguno. Este conflicto se manifiesta en la competencia entre construcciones discursivas que sustentan las políticas locales de crecimiento urbano descontrolado y los intentos ineficaces de controlarlo (Romero-Lankao y otros, 2013a).

3. Producción y uso de información científica

Las prácticas de producción y acceso a información científica y las relacionadas con su uso sistemático en la toma de decisiones se desarrollan en políticas anteriores y se encuentran en diferentes fases de evolución en las ciudades latinoamericanas. Por ejemplo, México, D.F., tiene una tradición más larga de creación de información sobre contaminación atmosférica, relevante en lo que concierne al cambio climático; en cambio, ciudades como Manizales (Colombia) y municipios –o partidos– como San Fernando (provincia de Buenos Aires) pueden dar fe de una tradición en la gestión de información sobre riesgos.

Las fuentes gubernamentales y no gubernamentales que producen información varían a lo largo de la región. En ciudades como Santiago, la información científica sobre recursos naturales y desastres hidrometeorológicos proviene de los niveles nacionales de gobierno en colaboración con universidades nacionales y en el caso de la sostenibilidad urbana y el cambio climático también la producen organizaciones internacionales (como la Asociación Helmholtz, Alemania). En Santiago se llevó a cabo un proceso participativo de consulta, de dos años de duración, que arrojó como resultado la elaboración del Plan Regional de Adaptación al cambio climático; durante dicho proceso se utilizó una base de datos científicos relativos al cambio climático y sus impactos a nivel metropolitano (Krellenberg y otros, 2013).

Es común que la información se transmita del nivel nacional a los niveles estatal y local, con la premisa de una falta, supuesta o real, de capacidad a nivel municipal (Romero-Lankao y otros, 2013a y 2013b). En ciudades como Manizales (Colombia) y Chetumal (México), las universidades y centros académicos locales son tradicionalmente una fuente de generación de los conocimientos y experiencias en que se apoyan los gobiernos municipales y estatales (Hardoy 2013; Hardoy y Velásquez Barrero, 2014; Hardoy y otros, 2014). México, D.F., o, más bien, el Gobierno del Distrito Federal, presenta una situación diferente, pues está desempeñando un papel activo en la producción de la información necesaria.
para planificar las medidas contra el cambio climático, a la vez que mejora su capacidad institucional de respuesta. La ciudad confecciona su propio inventario de emisiones y cuenta con el Centro Virtual de Cambio Climático.

En Brasil, la información científica relacionada con el cambio climático proviene de instituciones ejecutivas del gobierno nacional como el Instituto Nacional de Investigaciones Espaciales (INPE), el Panel Brasileño sobre Cambio Climático (PBMC) y los Institutos Nacionales de Ciencia y Tecnología (INCT). De igual importancia son centros educativos públicos como el Instituto Virtual Internacional del Cambio Global (IVIG), así como la información más específica generada en nivel local por las instituciones de los estados y municipios (por ejemplo, el Instituto Pereira Passos -IPP).

En cuanto a la divulgación de la información, los tomadores de decisiones de varias ciudades suelen basarse en Internet para intercambiar información entre el gobierno y el público en general y publican sus informes, planes y datos en páginas de Internet, dando por sentado que así la información pasa a ser de dominio público y que la población la utilizará (Romero-Lankao y otros, 2013a y 2013b). Este modelo se basa en el supuesto de que los usuarios están capacitados para encontrar en la red la información que necesitan. Las investigaciones realizadas en la Ciudad Autónoma de Buenos Aires, Bogotá, México, D.F., y Santiago (Romero-Lankao y otros, 2012) permitieron a los autores del presente capítulo corroborar que la realidad difiere de las expectativas, pues los sectores populares recurren primero a la televisión y, en segundo lugar, a la radio como principales fuentes de información sobre riesgos ambientales y climáticos.

4. Participación ciudadana

Si bien las autoridades urbanas de la región han seguido la tendencia internacional de hacer participar en el diseño de planes y programas a distintos sectores privados y de la sociedad civil (Garfin, Romero-Lankao y Varady, 2013; Carmin, Nadkarni y Rhie, 2012), las experiencias de participación han ido adquiriendo connotaciones distintas y se enfrentan a retos y oportunidades diferentes.

En un lado del espectro se encuentra Manizales, que ha desarrollado un proceso de participación ciudadana -pocas veces visto en otras ciudades- para el diagnóstico, la planificación, la implementación y el monitoreo. La capacidad de concertación y establecimiento de acuerdos, y de generación de información de calidad para la toma de decisiones resultante de este tipo de participación, se convirtió en un activo institucional de tal envergadura que permitió a diversos sectores y actores no gubernamentales mantener la agenda ambiental y de gestión de riesgos y, actualmente, también la agenda de adaptación, prescindiendo de las administraciones no interesadas en esos ámbitos de política. En otras palabras, la participación social permitió salvar la brecha entre una gestión y otra, aun cuando no hubo continuidad en las políticas o a pesar de que las autoridades cambiaron sus prioridades y redujeron el apoyo que prestaban a políticas que apuntaban a la capacidad de respuesta institucional y ciudadana (Hardoy 2013; Hardoy y Velázquez Barrero, 2014; Hardoy y otros, 2014).

En Brasil, la participación ciudadana oficial se ha limitado a la estructura de consulta prevista en el Foro Municipal sobre el Cambio Climático. São Paulo y Rio de Janeiro elaboraron sus respectivas leyes de políticas municipales sobre cambio climático. Tanto en las conferencias nacionales temáticas iniciadas en 2003 como en la inclusión del cambio climático como tema de las conferencias nacionales, estaduales y municipales de medio ambiente, la participación de la sociedad civil se ha limitado a procesos consultivos que, por un lado, partten de la estructura oficial, y que, por el otro, no dejan de ser espacios de participación y debate con la sociedad.

El análisis de casos de estudio permitió a los autores del presente capítulo constatar que diferentes instancias de planificación incluyen espacios y mecanismos de participación y articulación entre sectores y actores, sobre todo en las etapas de diagnóstico y de planificación de políticas. Las
universidades y centros de estudio nacionales, estatales y locales han sido tradicionalmente una fuente de generación de los conocimientos y las experiencias en que se apoyan los gobiernos municipales y estatales. Por ejemplo, en Santiago, México, D.F., y Chetumal, académicos, especialistas y diferentes niveles sectoriales y administrativos del gobierno (y en México, D.F., también el público en general) han participado en procesos de consulta destinados a dar a conocer las preocupaciones y prioridades de los distintos actores en lo relativo al cambio climático (Hardoy y otros, 2014; Krellenberg y otros, 2013; Romero-Lankao y otros, 2013a y 2013b).

La participación tiene que hacer frente a diversos desafíos. Si el objetivo es apuntalar la capacidad institucional, es fundamental que la participación —o, como mínimo, la rendición de cuentas— forme parte de la toma de decisiones también durante las etapas de implementación y evaluación de políticas. En algunas ciudades, los mecanismos previstos para la interacción con las comunidades tienden a ser tecnocráticos, autoritarios y paternalistas, ya que se suele pensar que la información y las estrategias de gestión son adecuadas si “fueron redactadas por los técnicos que saben lo que hacen” (declaración de una autoridad nacional de protección civil, citada en Romero-Lankao y otros, 2013b). Este tipo de opiniones omiten las diferencias estructurales implícitas en las relaciones de poder que restringen el acceso de las poblaciones urbanas a los procesos de diagnóstico de los problemas asociados al cambio climático y a los procesos de definición de las medidas de gestión más apropiadas (Few, Brown y Tompkins, 2007; Romero-Lankao y otros, 2012). Sobre todo en América Latina, la participación puede verse limitada por asimetrías en el acceso a recursos y en el poder de decisión de los actores. La capacidad de producir información, la calidad de la información científica y el acceso a ella, suelen estar limitados a un grupo selecto de actores gubernamentales y no gubernamentales (académicos, sector privado). Quienes no forman parte de ese círculo selecto, incluidas las organizaciones locales y los gobiernos municipales, acaban contando, debido a la falta de poder y de recursos económicos y humanos, con pocas posibilidades de producir y almacenar información primaria y secundaria para comprender y resolver sus problemas de mitigación y adaptación (Romero-Lankao y otros, 2013a y 2013b; Bórquez y otros, 2009).

E. Conclusiones

En el presente capítulo se ha aplicado un marco analítico para estudiar la capacidad institucional de respuesta y se ha ofrecido al lector una perspectiva integrada y comparada de las respuestas de mitigación y adaptación a la variabilidad y el cambio climático en Buenos Aires y Rosario (Argentina), São Paulo y Río de Janeiro (Brasil), Manizales (Colombia), Santiago, y Chetumal y México, D.F. (México), ciudades que se encuentran en distintas fases de institucionalización de su agenda climática. La utilización de un análisis de casos de estudio y la comparación de las experiencias de gestión permitieron constatar que el diseño de las medidas de política se vincula al diagnóstico del problema de política (cambio climático) y que se sustenta en experiencias anteriores de gestión, con algunas ciudades centradas en la gestión de la contaminación del aire y, otras, en la gestión de desastres.

A pesar de que la descentralización y la reforma neoliberal permitieron a los gobiernos locales asumir responsabilidades relevantes para las políticas de adaptación y mitigación, la eficacia de esas medidas depende de la existencia de gobiernos locales competentes e inclusivos, con recursos financieros y humanos, y que cuenten con la capacidad institucional de respuesta. En el presente capítulo, el análisis de casos ha permitido dibujar un mosaico de rasgos, situaciones y determinantes de la capacidad institucional de las ciudades latinoamericanas, entre los que destacan:

- Redes y estructuras administrativas: Las estructuras administrativas en ciudades como Santiago, México, D.F., y Buenos Aires tienden a ser centralizadas, fragmentadas y descoordinadas. En ciudades y momentos de mayor alineamiento político entre los
distintos niveles de gobierno (Chetumal y Rosario), las posibilidades de coordinación y apoyo nacional a los otros niveles de gobierno han sido mayores. Solamente en algunas ciudades (como Manizales), la descentralización fue relativamente más exitosa a la hora de apuntalar la capacidad de gestión de los gobiernos locales.

- El marco jurídico se constituye junto con la legislación pertinente sobre cuya base cada ciudad puede desarrollar sus propias estrategias de mitigación y adaptación. Los niveles de desarrollo jurídico van de la carencia de legislación climática a nivel nacional (Santiago y Rosario) a países con leyes climáticas a nivel nacional y estatal (ciudades mexicanas, brasileñas y recientemente colombianas). De igual importancia para la capacidad de respuesta es la existencia de un marco jurídico para la gestión de otros ámbitos, como desastres y ordenamiento del territorio urbano.

- Dos obstáculos jurídicos a la capacidad institucional de respuesta son el resultado de problemas de cumplimiento de la normativa y, también, de la más limitada influencia de los gobiernos locales sobre sectores y determinantes clave de los hábitos de uso de energía, las emisiones y la creación de riesgos y vulnerabilidades.

- La producción y el uso de información científica se desarrollan según políticas anteriores y en las ciudades latinoamericanas se encuentran en distintas fases de evolución. Mientras que áreas urbanas del Brasil y México cuentan con centros académicos de vanguardia en la región y con interfaces ciencia-política (como los centros virtuales de cambio climático), hay países y ciudades más pequeños que deben recurrir a universidades y centros académicos locales.

- Entre los encargados de la toma de decisiones es común utilizar Internet para intercambiar información entre el gobierno y el público en general. Se trata de un hábito que crea una especie de vacío de comunicación, ya que las poblaciones urbanas, sobre todo los sectores populares, recurren primero a la televisión y, en segundo lugar, a la radio, como principales fuentes para obtener información sobre riesgos ambientales y climáticos.

- Participación social: Pese a la participación de sectores privados y de la sociedad civil en el diseño de planes y programas climáticos, no todas las experiencias de participación social son iguales, y van desde las realizadas en ciudades como Manizales o Rosario, con procesos participativos innovadores e incluyentes, hasta los más comunes procesos consultivos que, con todas sus limitaciones, ofrecen la posibilidad de abrir espacios de diálogo y debate con la sociedad. Aun ofreciendo la posibilidad de apuntalar la rendición de cuentas durante la implementación y evaluación de políticas, la participación se ve limitada por asimetrías en el acceso a recursos y poder de decisión entre los sectores y organizaciones interesados.

Bibliografía

Borquez, R. y otros (2009), “Institutional responses to climate change in Chile”, proyecto “Coming down the mountain: understanding the vulnerability of Andean communities to hydroclimaticologic
variability and global environmental change”, octubre.

OCDE (Organización de Cooperación y Desarrollo Económicos) (2005), *Evaluaciones de desempeño ambiental. Chile* (LC/L.2305), Santiago de Chile, Organización de Cooperación y Desarrollo Económicos (OCDE)/Comisión Económica para América Latina y el Caribe (CEPAL).

and Global Policy, vol. 30, N° 4, Amsterdam, Elsevier.
Satterthwaite, D. y otros (2007), Adapting to Climate Change in Urban Areas: the Possibilities and Constraints in Low- and Middle-income Nations, Instituto Internacional para el Medio Ambiente y el Desarrollo.
VI. El aire en la agenda pública: el caso de la Ciudad Autónoma de Buenos Aires

Ana María Murgida, Claudia F. Guebel, Claudia E. Natenzon y Laura Frasco

A. Introducción

Entre las problemáticas urbanas, la contaminación del aire cumple un papel central. Es un núcleo de interés científico mundial desde la década de 1950 y figura en la agenda política internacional desde la década de 1970. Se trata de un tema especialmente preocupante, pues se ha revelado su relación con enfermedades cardiorrespiratorias que pueden ser causa de muerte. A esta cuestión se ha sumado, en las últimas décadas, el problema de las emisiones de gases de efecto invernadero (GEI), una preocupación política ligada al problema mundial del cambio climático.

En esta línea, en el presente trabajo se muestran los resultados de una investigación sobre las relaciones entre los diferentes actores sociales del ámbito científico y gubernamental —el científico, el político o funcionario político y el técnico— vinculados al seguimiento de la composición de la “atmósfera de las ciudades”, sus efectos sobre la salud humana y su relación con la dinámica climática, tomando como objeto de estudio el caso de la Ciudad Autónoma de Buenos Aires (CABA). El objetivo de este capítulo es analizar las condiciones de la producción de datos en distintos niveles de gobierno y su sinergia con el aprovechamiento de los avances científicos para la gestión política específica en este campo. El supuesto central del trabajo considera que el tipo y la calidad de las relaciones establecidas entre los actores sociales influyen a la hora de generar lineamientos políticos que contemplan la relación multicausal entre las emisiones GEI, los contaminantes clásicos del aire, la vulnerabilidad social y los procesos de adaptación urbanos.

La investigación tuvo como marco el Proyecto SAEMC (South American Emissions, Megacities and Climate), financiado por el Instituto Interamericano para la Investigación del Cambio Global (IAI) (2006-2011), en el que colaboraron diversas agencias de investigación científico-técnicas de América Latina. Las ciudades estudiadas fueron: Buenos Aires, Bogotá, Lima, México D.F. y São Paulo. En
cada una de ellas se intentó conocer las características de la composición del aire, su relación con los problemas de salud y su impacto en el fenómeno del cambio climático mundial.

El trabajo se expondrá de la siguiente manera. En la sección B se desarrollarán los aspectos teórico-metodológicos que han dado el marco conceptual y técnico para su ejecución. En la sección C se organizará la exposición del trabajo partiendo de dos ejes: en el punto 1 se abordará el recorrido histórico de la problemática de la ciudad de Buenos Aires, y en el punto 2 se tratará su recorrido político. Este punto se desglosará en varias subsecciones que han demostrado ser relevantes a partir de la misma investigación y de las entrevistas realizadas, a saber: a) Movilización social y demandas judiciales; b) Agenda local y compromiso internacional; c) Incertidumbre, interdisciplinariedad y diálogo; d) Voluntad política del gobierno; e) Institucionalización y formación de equipo técnico; f) Continuidad de las medidas de monitoreo, procesamiento y análisis de datos. El trabajo se cierra con la sección D, en la que se presentan las reflexiones finales en torno a la interacción entre ciencia y política.

B. Aspectos teórico-metodológicos

El cambio ambiental mundial, incluida la contaminación del aire, es uno de los desafíos a los que ha de hacer frente la sociedad actual, sobre todo en lo relativo a la gestión medioambiental de las ciudades. A un lado se sitúa la peligrosidad inherente a los efectos que en la población tiene el cambio climático, que se manifiesta en fenómenos cada vez más intensos, como el aumento de la frecuencia y la intensidad de las precipitaciones y sudestadas en el área metropolitana de Buenos Aires (AMBA) (Barros, Menéndez y Nagi, 2005); al otro, los efectos que las emisiones tienen en la salud de los habitantes de ciudades densamente pobladas y con un entramado social muy heterogéneo y, por tanto, con vulnerabilidades heterogéneas a la hora de afrontar las consecuencias de esos sucesos: inundaciones, pérdida de bienes, afecciones a la salud, entre otros (IAI, 2010). Se trata de problemas urgentes que hay que resolver a pesar de la gran incertidumbre respecto de sus causas y las formas de solucionarlas (Funtowicz, Ravetz y Aguilera, 1993).

Como fenómeno mundial, la complejidad que adquiere la calidad atmosférica en las ciudades requiere gestión política, un abordaje interdisciplinario que tome en cuenta el riesgo, tanto en el presente como proyectado hacia el futuro; de ahí que el presente análisis privilegie las perspectivas de la teoría social del riesgo y el método antropológico-etnográfico.

El marco de la teoría social del riesgo (Natenzon, 2007; Funtowicz, Ravetz y Aguilera, 1993; Funtowicz y de Marchi, 2000) permite abordar, de manera dialéctica e interdisciplinaria, el modo en el que la incertidumbre derivada de lagunas del conocimiento científico y de la toma de decisiones enlaza con las dimensiones básicas del riesgo: peligrosidad, vulnerabilidad y exposición.

Entre los elementos que forman parte de la toma de decisiones -tanto públicas como privadas- encontramos las valoraciones de los actores sociales sobre el medio ambiente y sobre sus propias prácticas, con las que construyen colectivamente las condiciones sociales, económicas y sanitarias que los predisponen a sufrir, reducir o impedir daños, o aprovechar efectos ambientales favorables (Roux y otros, 2006; Murgida, 2012).

A fin de complementar el abordaje teórico planteado y el análisis de la “toma de decisiones”, se ha recurrido a la teoría antropológica y sociológica en torno al problema de la política (tal como se expandirá en el punto 2 de la sección C), con el foco puesto en la relación entre el “campo científico” y el “campo político” (Bourdieu, 2000), para así abordar la problemática urbana de la contaminación del aire en la CABA.

Cabe señalar que las autoras se han nutrido también del método antropológico-etnográfico, consistente en la realización de trabajo de campo con entrevistas abiertas a diferentes actores sociales.
En gabinete se llevó a cabo un análisis cualitativo de las entrevistas a fin de recuperar y desnaturalizar algunas “categorías nativas” con la intención de hacer visibles problemas que aparecían soslayados. Las “categorías nativas”, con las que los actores sociales expresan su realidad en términos propios, para el antropólogo son un “símbolo maestro” particular o una palabra clave que puede “...dejar al descubierto toda la estructura de un sistema social y los principios subyacentes sobre los cuales se basa un orden social” (Shore, 2010). En ese sentido, visibilizan las representaciones, las valoraciones y la lógica sociales relativas a los procesos en los que esos actores están implicados. (Estas categorías y su análisis se exponen en las subsecciones del recorrido político).

Las autoras también han considerado que el caso local, además de ser intersectorial e interdisciplinario, se enmarca en una problemática socioambiental mundial y regional. Debido a ello, el universo de actores entrevistados y consultados, centrado en las figuras del científico, el político y el técnico, incluyó distintos niveles de actuación: internacional, nacional, la ciudad de Buenos Aires, la provincia de Buenos Aires y Santiago de Chile. En cuanto a la intersectorialidad, se ha optado por técnicos gubernamentales locales (salud municipal, defensoría del pueblo, laboratorio de aire); provinciales (Organismo Provincial para el Desarrollo Sostenible) y nacionales (Secretaría de Transporte). También se realizaron entrevistas a científicos de la Comisión Nacional de Energía Atómica (CONEA) vinculados al Proyecto SAEMC y a investigadores de la Universidad de Buenos Aires que abordan el tema desde la perspectiva de la salud. Por último, también se realizaron interconsultas con científicos y técnicos de organismos internacionales, como la CEPAL.

Las principales actividades realizadas durante este trabajo fueron: 1) revisión de la producción científica del Proyecto SAEMC, estudio de la bibliografía especializada en el tema, relevamiento de fuentes secundarias (medios de comunicación); 2) planificación del trabajo de campo y su realización, con entrevistas en profundidad a diferentes actores involucrados en el tema, a fin de contar con diversos puntos de vista respecto del mismo problema: científicos, médicos, abogados, funcionarios políticos, técnicos gubernamentales; 3) procesamiento de las entrevistas con metodología cualitativa, y 4) análisis de la bibliografía y su correlación con los resultados del procesamiento de las entrevistas realizadas, y formulación de un informe final (base de este trabajo).

C. El aire en la agenda pública de la Ciudad Autónoma de Buenos Aires

1. Recorrido histórico

En el transcurso del proceso histórico que incluye los desarrollos tecnológicos, las políticas de desarrollo y de salud, la ciudad de Buenos Aires se situó a la vanguardia dentro del concierto de ciudades argentinas y sudamericanas cuando, a mediados de la década de 1960, comenzó a efectuar mediciones de ciertos gases atmosféricos que se identificaron científicamente como peligrosos para la salud de la población.

Desde ese momento y hasta el presente, el seguimiento de la química atmosférica ha ido evolucionando en la agenda pública de la ciudad simultáneamente con el conocimiento científico-técnico de su composición y sus impactos en la salud humana.

En cuanto a la agenda pública, la década de 1970 se caracterizó por los lineamientos internacionales que se intentaron incorporar en la agenda política. Por ejemplo, durante los primeros años de la década de 1970 se formó la Asociación Argentina contra la Contaminación Ambiental, formada por académicos locales que se interesaron en los lineamientos planteados en 1965 por el Consejo Directivo de la Organización Panamericana de la Salud, que recomendaba crear programas de investigación y monitoreo del aire y del agua, y en la Ley de Protección de la Calidad del Aire estadounidense, e impulsaron en 1973 la
aprobación de la Ley N° 20.284 de preservación de los recursos del aire, que nunca fue reglamentada (Clichevsky, 2002; Corc, 2000). Así, la CABA ingresó en la red de laboratorios de vigilancia atmosférica, cuya función era conocer y buscar formas de controlar “la concentración de contaminantes” que en determinadas zonas de la ciudad incidián de manera crítica en la salud de la población. Con dicho marco se han realizado campañas de medición de concentraciones de contaminantes en aire, como el dióxido de azufre, los óxidos de nitrógeno, el monóxido de carbono, el material particulado total en suspensión y el plomo. Los resultados obtenidos contribuyeron a identificar algunas zonas de la ciudad donde la calidad del aire estaba deteriorada y en consecuencia se fueron tomando medidas orientadas a regular las tecnologías asociadas con las emisiones de diferentes actividades, entre otras, la prohibición de los incineradores de residuos.

En las décadas siguientes, esa orientación política de la gestión del aire fue perdiendo presencia en la agenda local, se redujo el diálogo con el sector científico y, con ello, la incorporación de los resultados de las investigaciones para articularlos a las medidas necesarias. Hasta mediados de la década de 1990 no comenzó a recuperarse el interés por incorporar la problemática del aire en la agenda pública.

A partir de 1987, casi hacia finales del mandato de Raúl Alfonsín (primer gobierno democrático tras la dictadura militar), el Estado comenzó a delinear formalmente la incorporación de la cuestión ambiental en la estructura administrativa, coincidiendo con la difusión del paradigma del desarrollo sostenible postulado en el Informe Brundtland (Naciones Unidas, 1987). Si bien no logró consolidarse en la gestión, la medida reflejó un cambio en la voluntad política (Diez, 2006; Byk y Repetto, 1992).

Ya en la década de 1990, bajo la influencia de los organismos internacionales en la definición de la política nacional, se adoptaron algunos de los principios de la Cumbre de la Tierra (Río de Janeiro, 1992); por ejemplo, se reconoció la importancia de la participación de la sociedad civil, si bien a través de las ONG, de modo tal que se estimuló el desarrollo y la participación de estas organizaciones, lo que, aunque favoreció la difusión de la problemática ambiental, no significó que la política quedara definida por las necesidades de la sociedad (Diez, 2006).

Entre los disparadores de la agenda internacional que contribuyeron a aumentar el peso del problema del aire en la agenda local, las autoras consideran que figuran los que se vinculan a la problemática del cambio climático global y que, además de recomendaciones, ya contaban con financiamiento externo (también son relevantes los documentos producidos y difundidos por la CEPAL en la primera década del siglo XXI). Por ejemplo, cabe destacar las recomendaciones para efectuar mediciones de los GEI que provocan el cambio climático. En 1994, la Argentina había ratificado la Convención Marco de las Naciones Unidas sobre el Cambio Climático, mediante la Ley N° 24.295, y en 2001 hizo lo propio con el Protocolo de Kyoto, mediante la Ley N° 25.438, y de esa manera aceptó sus instituciones, instrumentos jurídicos internacionales y objetivos, entre otros, el de lograr la estabilización de las concentraciones de GEI en la atmósfera para reducir su interferencia en el sistema climático mundial mediante programas nacionales y la confección de inventarios periódicos. Los gases que el Protocolo de Kyoto recomienda medir e inventariar son: el dióxido de carbono (CO₂), el metano (CH₄), el óxido nitroso (N₂O), los hidrofluorocarbonos (HFC), los perflurocarbonos (PFC) y el hexafluoruro de azufre (SF₆).

Las medidas locales aplicadas en la gestión del aire de la CABA incluyeron, como combustible, el gas natural comprimido (GNC), el proceso de reconversión del parque automotor con estímulos crediticios y el ensayo de reglamentaciones para la circulación en vehículos particulares por la ciudad. Simultáneamente, crecía el parque automotor circulante, las áreas residenciales se expandían hacia la periferia de la ciudad y, en consecuencia, aumentaban los desplazamientos y las emisiones (D’Angiola, 2005; Ravella, Karol y Aón, 2012). La implementación del GNC ya había comenzado a desarrollarse y difundirse hacia finales de la década de 1980, aunque su generalización no se produjo hasta la década siguiente.

Hacia 2002-2003 se iniciaron en la Argentina los diálogos intersectoriales en torno a las posibles mejoras del sistema de redes de vigilancia y monitoreo del aire, tanto en discusiones a nivel nacional como
en las grandes ciudades del país, sobre todo en Buenos Aires, Rosario y Córdoba, y en lo que respecta a las actividades que generan emisiones, se mantuvieron conversaciones constantes entre instituciones del nivel nacional (Argentina), de la ciudad (CABA) y de la provincia (Buenos Aires). El sector salud pasó a formar parte de las mesas de discusión sobre el aire, lo que arrojó como resultado el establecimiento de programas de vigilancia epidemiológica. En el mismo período también se llevaron a cabo investigaciones científicas fomentadas por la Agencia de Cooperación Internacional del Japón (JICA), gracias a las cuales se comprobó la existencia de sustancias contaminantes en la sangre de la población, sobre todo en la población más vulnerable, que habita en la cercanía de los polos industriales situados a lo largo de las riberas del Riachuelo y del río Matanza. Entre los resultados de esas investigaciones fue especialmente preocupante el hallazgo de plomo por encima de los niveles admitidos por la Organización Mundial de la Salud (OMS).

También en ese período comenzaba a manifestarse la preocupación de los vecinos de las zonas críticas por la concentración de emisiones; de ahí que se vincularan con diferentes sectores institucionales de la salud y el medio ambiente, con ONG ambientalistas y con la Defensoría del Pueblo de la ciudad. El problema llegó incluso a judicializarse y se constató la necesidad de abordarlo de manera integral incluyendo otros tipos de contaminación, como la de los cursos de agua y la producción de ruidos.

El inicio de los debates sobre el problema socioambiental incidió en el trabajo legislativo y en la promulgación de leyes específicas, como la Ley de calidad atmosférica N° 1357/2004, sancionada por la legislatura de la ciudad de Buenos Aires en junio de 2004. Para la contaminación del agua, se promulgó la Ley de regulación, control y gestión de aceites vegetales usados, y para los residuos ambientales, la creación, en virtud de la Ley 1884/2006, del Programa de prevención de la contaminación y gestión ambiental de residuos urbanos y control de la contaminación hídrica.

En ese contexto, junto con la inclusión de la contaminación ambiental en la agenda pública y la firma de los acuerdos internacionales, Buenos Aires se asoció al organismo internacional Consejo Internacional de Iniciativas Locales Relativas al Medio Ambiente (ICLEI)28, institución que colaboró con el Gobierno de la CABA para la confección de un inventario de emisiones GEI. En las mesas de diálogo local y nacional se había acordado acerca de la necesidad de contar con datos para caracterizar la atmósfera de la ciudad debido al impacto que la calidad del aire tiene en la salud. A pesar de ello, se adoptaron metodologías para el monitoreo y la confección de inventarios de emisiones propuestas en las recomendaciones internacionales. Así, el primer inventario GEI de la CABA estuvo disponible en 2003, pero no incluyó contaminantes de importancia local.

Dicho inventario puso de manifiesto la tendencia al alza de las emisiones GEI. El informe gubernamental hizo hincapié en la contribución de la ciudad a esas emisiones y se atribuyó la excepción correspondiente a 2001 a una reducción del consumo energético industrial, comercial y residencial, que coincidió con la crisis económica nacional. El interés que suscitaron el tema y las recomendaciones internacionales derivaron en la necesidad de actualizar el inventario GEI de manera permanente.

Actualmente trabaja en ese ámbito el Gobierno de CABA, otra vez en colaboración con ICLEI, en virtud de la Iniciativa para el Cambio Climático promovida por la Fundación Clinton dentro del marco del Grupo de Liderazgo Climático - C40 (Gobierno de la Ciudad Autónoma de Buenos Aires, 2008). Así queda ratificado que el lineamiento político por el que a partir de 2008 se rige la gestión de la calidad del aire continúa dando prioridad a las emisiones GEI a la hora de definir qué se ha de medir y para qué.

De hecho, a comienzos de 2009 se sancionó el Decreto 137/2009, con el que se estableció el marco institucional para diseñar e implementar el plan de acción de la ciudad en materia de cambio climático,
dentro de las competencias de la Agencia de Protección Ambiental. El objetivo es “el desarrollo de políticas que permitan evaluar e implementar medidas concretas de mitigación y adaptación al cambio climático”. Entre las medidas planteadas se propuso crear una línea de base mediante una actualización del inventario GEI de la ciudad. Es importante señalar que el plan mencionado nada dice de la vinculación entre calidad del aire, contaminación y salud de la población.

Los resultados parciales de la actualización del inventario GEI y las mediciones efectuadas en el marco del Proyecto SAEMC muestran que, en 2009, las concentraciones de monóxido de carbono (CO) se redujeron un 25% respecto de 2002. En cambio, el tiempo de exposición de las concentraciones de CO superan (durante la “hora pico” —desplazamientos desde y hacia las zonas de concentración de oficinas—, en los días hábiles y, particularmente, en calles angostas con alta circulación de vehículos particulares y públicos) los estándares indicados en la Ley CABA N° 1.356/2004. Si bien el número de vehículos en circulación en la ciudad va en aumento, las emisiones de CO se han reducido porque los nuevos vehículos utilizan una tecnología con menores tasas de emisión. Este resultado se obtuvo al analizar las características de las fuentes móviles y su correlación con las emisiones (Gallardo, 2012, pág. 152).

Sin embargo, el Proyecto SAEMC no se detuvo ahí y abordó la relación entre calidad del aire y salud. Asimismo, se propuso no solo determinar la correlación existente entre presencia de contaminantes atmosféricos que permiten caracterizar la atmósfera urbana, sino también tomar en cuenta los gases que afectan a la población. En ese sentido, se trabajó para correlacionar las estadísticas de mortalidad y morbilidad con las de química atmosférica. Basándose en los datos oficiales existentes y disponibles en la ciudad de Buenos Aires, fue posible obtener resultados que indican la correlación entre la exposición a concentraciones de CO con las causas de mortalidad por afecciones cardiovasculares y respiratorias (entrevistas con investigadores 2011-2012). La metodología empleada en el Proyecto SAEMC utilizó un diseño de series temporales para vincular datos diarios mediante ecuaciones de regresión. Se llevó a cabo un análisis por etapas con la población clasificada por grupos de edad y sexo y considerando la causa de muerte (cardiovascular o respiratoria) según la codificación internacional CIE10 (Abrutzky, 2010, pág.3). Las correlaciones positivas entre cambios de temperatura y mortalidad son complejas y de signo opuesto según la estación del año, siendo más directas en verano (Abrutzky, 2010, pág. 64).

La metodología empleada por el equipo de investigadores argentinos del Proyecto SAEMC fue homologada por los colegas de los demás países que participaron en la investigación y pasó a ser un instrumento de medición con aplicación científico-técnica, útil también para analizar los datos correlacionando materiales químicos, clima y salud. Así, el proyecto creó herramientas que contribuyen a ponderar las emisiones que incrementan la vulnerabilidad de la salud a la contaminación atmosférica.

2. Recorrido político

La breve cronología esbozada en torno al tema del aire en la política pública de la CABA da cuenta de la manera en que agenda internacional ha predominado por encima de la agenda local. Asimismo, explica la fuerza de la presión pública a la hora de establecer lineamientos de acción política. El recorrido por la normativa y el relato de los diferentes actores sociales permiten recuperar la dinámica social y política que se encuentra detrás de las decisiones de la agenda. En palabras de Shore (2010, págs. 37 y 38), “Si la función de las políticas es intervenir en lo social y darle forma al mundo, entonces el estudio de las políticas se convierte en un instrumento útil para comprender los motivos que fundamentan dichas intervenciones y las lógicas culturales que las impulsan”.

En ese sentido, “política” es la aspiración a participar en el “poder” o a influir en la distribución del “poder” en un mismo Estado, o entre los distintos sectores que lo componen. Cuando se dice que una cuestión es “política”, que los funcionarios “son políticos”, y que una “decisión” está “políticamente condicionada”, lo que se quiere decir es que la respuesta a tal o cual cuestión, así como la esfera de
actividades y las condiciones de tal o cual decisión, dependen de los intereses en torno a la conservación, la distribución o la transferencia del poder (Weber, 1994).

Esa toma de decisiones se refiere tanto al proceso de sistematización de información como a la intervención en algún aspecto de la realidad problemática que se pretende modificar. Así pues, importa conocer a los que toman parte en la cuestión (actores), saber por qué realizan las acciones que realizan (motivos), con qué recursos institucionales y financieros operan sobre la realidad (medios) y para qué (fines):

“... las políticas pueden ser interpretadas en cuanto a sus efectos (lo que producen), las relaciones que crean y los sistemas de pensamiento más amplios en medio de los cuales están inmersas” (Shore, 2010, pág. 31).

A los actores sociales urbanos involucrados en la cuestión del aire se los identifica por el tipo de actividad que desarrollan: producción teórica y bibliográfica, práctica y de gestión, política, social, barrial, o participación en encuentros científicos interdisciplinarios. Cada uno de ellos es portador de un conocimiento específico y un posicionamiento social desde el que expresa sus intereses, sesgados por distintos clivajes: disciplinarios, sectoriales, profesionales y vivenciales.

Estos actores se escogieron a partir de observación participante, entrevistas en algunos casos, bibliografía o fuentes secundarias (prensa escrita), lo que permitió a las autoras montar un cuadro de actores sociales urbanos involucrados en la cuestión del aire.

Algunos de esos actores son: vecino del barrio, político partidario, funcionario gubernamental de origen político, funcionario técnico de la carrera gubernamental, científico, profesional —particularmente de la salud y del derecho—, funcionario de organismos internacionales, periodista o legislador, y forman parte de diversos espacios institucionales: comunas vecinales/asambleas; ONG ambientalistas y barriales; sistema de salud de la CABA/hospitales y centros de salud; poder legislativo/legisladores; poder ejecutivo de la ciudad/técnicos gubernamentales; poder judicial/Corte Suprema de Justicia de la Nación; comunidad científica; Defensoría del Pueblo de la ciudad; Comité de la Cuenca Matanza-Riachuelo (ACUMAR); medios de comunicación/periodistas ambientales o científicos (véase el recuadro VI.1).

RECUADRO VI.1

ACTORES SOCIALES URBANOS QUE PARTICIPAN EN LA CUESTIÓN DEL AIRE

Los estudios realizados han permitido identificar a los actores sociales urbanos que participan en la problemática objeto de estudio, la calidad del aire en la CABA, y que se caracterizan a continuación.

• Comunas vecinales/asambleas barriales, surgidas al calor de la crisis de 2001-2002. En ellas los vecinos discuten sobre una amplia gama de problemas locales, incluidos los ambientales. Se han tomado particularmente en cuenta las comunas ubicadas en el sur de la ciudad, cercanas a la fuente más importante de emisiones que influyen en el aire de la CABA.

• ONG ambientalistas y barriales; entre ellas, ONG internacionales como Greenpeace, nacionales como la Fundación Ciudad, el Centro de Estudios Legales y Sociales (CELS) y la Fundación Ambiente y Recursos Naturales (FARN), y barriales, como la Asociación de Vecinos de La Boca.

• Sistema de salud de la CABA formado por hospitales y centros de salud junto con el Departamento de Salud Ambiental, entre cuyos objetivos figura la localización de las fuentes de contaminación y los casos de ellas derivados, creando espacios de formación y capacitación permanente sobre la temática.

• Poder legislativo/legisladores: son los encargados de diseñar y aprobar el cuerpo normativo tanto a nivel ciudad como a nivel nacional. Para identificar su participación se utilizaron los textos de las
Recuadro VI.1 (conclusión)

leyes, los proyectos o la divulgación, en los medios de comunicación, de sus intervenciones, pues no fue posible concretar ninguna de las entrevistas solicitadas.

- Poder ejecutivo de ámbito urbano, provincial y nacional, relacionados con las instituciones públicas de cambio climático, transporte, calidad del aire y salud. Aquí cabe diferenciar la lógica de los funcionarios que llegan al cargo como resultado de procesos electorales de la lógica de los que han desarrollado su carrera formando parte de la administración pública.

- Poder judicial/Corte Suprema de Justicia de la Nación: el objetivo es leer en las resoluciones judiciales sus aportes a la solución de problemáticas ambientales.

- Autoridad de la Cuenca Matanza-Riachuelo (ACUMAR): ente interjurisdiccional de derecho público creado por la Ley nacional 26.168/2006 y a raíz de una demanda judicial de vecinos de la cuenca (Causa “Mendoza, Beatriz Silvia y otros contra Estado nacional y otros”) junto con ONG y la Defensoría del Pueblo de la Nación.

- Comunidad científica: investigadores de las ciencias naturales y sociales que participan en proyectos nacionales e internacionales relativos a la problemática del aire en grandes ciudades.

- Defensoría del Pueblo de la Ciudad de Buenos Aires: órgano unipersonal e independiente con autonomía funcional y autarquía financiera. Tiene como misión la defensa, protección y promoción de los derechos humanos, los derechos e intereses individuales, colectivos y difusos tutelados en la Constitución, en la Constitución de la CABA y otras leyes.

- Medios de comunicación/periodistas especializados en temas ambientales o científicos. Los medios de difusión y sus agentes, los periodistas, registran las distintas versiones de los problemas ambientales, incluidos los diversos intereses de los actores involucrados.

Fuente: Elaboración propia.

La presencia o acción de estos actores está vinculada con el desarrollo y la evolución de una política pública sobre el aire. De manera general, desde la década de 1990, pero sobre todo desde 2001, el problema del aire se instaló en el diálogo intersectorial, interdisciplinario e intergubernamental, y tuvo repercusión mediática.

Cabe destacar como factores específicos que intervienen en la articulación social - política y científica- de la problemática del aire, ciertos aspectos significativos, relevados de las entrevistas y que forman parte de las “categorías nativas” de los entrevistados. Esos aspectos configuran la agenda ambiental local, pues articulan en un entramado de gran complejidad los motivos, los medios y los fines de los distintos actores sociales.

En ese sentido, se desglosa a continuación el recorrido político en los siguientes puntos (o aspectos significativos)

a) Movilización social y demandas judiciales
b) Agenda local y compromiso internacional
c) Incertidumbre, interdisciplinariedad y diálogo
d) Voluntad política del gobierno
e) Institucionalización y formación de equipo técnico
f) Continuidad de las medidas de monitoreo, procesamiento y análisis de datos
a) Movilización social y demandas judiciales

Las movilizaciones de vecinos que se iniciaron durante la crisis económica argentina de 2001 también estuvieron motivadas por los problemas ambientales. Particularmente significativa fue la experiencia desarrollada con la comunidad desde un hospital público del sur de la ciudad. Esta zona es una de las áreas críticas, donde se conjugan la elevada vulnerabilidad de la población y el deterioro ambiental. “... la gente también empujó al hospital, se metió en el hospital” (entrevistas con técnicos hospitalarios, 2011). Así, se celebraron asambleas que desembocaron en la creación de un Comité de salud ambiental comunitario, que funcionó con altibajos hasta su desaparición (a los pocos años de su fundación).

Las reclamaciones comunitarias pusieron de manifiesto el problema de la contaminación ambiental. Al mismo tiempo, la participación de tipo asamblearia -en el contexto de crisis de 2001- fortaleció una nueva forma de construcción del poder. Como luego diría Rubén Dri (2006), supuso la construcción colectiva de un sujeto político que introdujo el problema ambiental como un problema social, político y de derecho ciudadano de una de las zonas críticas de la ciudad.

La experiencia mencionada anteriormente sienta un precedente en la ciudadanía y demuestra que a partir de la demanda comunitaria y de la interacción fluida entre dos sectores de la sociedad con saberes o conocimientos diferentes, se puede introducir institucionalmente el tema de la contaminación ambiental, en este caso, procedente de un polo petroquímico vecino.

La presión ejercida socialmente logró que el tema pasara a formar parte de las discusiones parlamentarias en el sector ejecutivo del gobierno y también en el sector judicial. Asimismo, contribuyó a difundir resultados de la comunidad científica.

Un ejemplo de ello es la Ley CABA Nº 1939/2006 de estudio epidemiológico para los habitantes de los barrios aledaños al Dock Sud, una ley que responde a las reclamaciones sociales de vecinos y organizaciones no gubernamentales en relación con la zona crítica que rodea al polo petroquímico Dock Sud (ubicado en la provincia de Buenos Aires y limítrofe con la CABA). Durante el debate de la citada ley, el legislador señaló que la promovía el hecho de que “en este complejo industrial hay instaladas cerca de 50 empresas petroquímicas y circulan 5.550 vehículos por día. Estos factores generan una contaminación del aire que pone en riesgo la salud de los vecinos, tanto como la de los trabajadores de la zona” (Redacción Noticias Urbanas/27 de mayo de 2005). Sin embargo, tras el debate, la votación y la aprobación, la ley no se reglamentó (entrevista con funcionarios técnicos, 2011). Una expresión o resultado indirecto de esa presión social fue la institucionalización o creación, en 2006, de la Autoridad de Cuenca Río Matanza-Riachuelo29 (ACUMAR); además, a raíz de una sentencia de la Corte Suprema de Justicia (2008) se desarrollaron las tareas de monitoreo, control y planificación. Dentro de ACUMAR, las ONG son las que hasta el día de hoy controlan las actividades que deben llevar a cabo los organismos gubernamentales municipales, nacionales y provinciales, saber, limpieza del Riachuelo y de basurales, medición de emisiones, entre otras (entrevistas con técnicos hospitalarios, 2011). Recientemente, estas ONG crearon una página web (¿Qué pasa, Riachuelo?) con una serie de indicadores socioambientales georreferenciados que presentaron ante autoridades gubernamentales involucradas en la problemática de la cuenca. La finalidad de dicha sistematización es generar una base de datos primarios que los ciudadanos puedan consultar, pero que al mismo tiempo pueda complementarse con la información que envíen los miembros de las sociedades locales. En algunos casos, la información, además de introducirse en la base de datos, se eleva a las autoridades jurídico-administrativas correspondientes; en otros, la

29 La Autoridad de Cuenca Matanza-Riachuelo es un ente interjurisdiccional de derecho público, creado en noviembre de 2006 por la Ley nacional Nº 26.168, y a la que han adherido las legislaturas de la provincia de Buenos Aires y de la Ciudad Autónoma de Buenos Aires, que articula el Plan Integral de Saneamiento Ambiental de la Cuenca Matanza-Riachuelo (PISA), una zona en la que habitan más de 5 millones de personas (http://www.acumar.gov.ar/)
Defensoría del Pueblo dicta, tras proceder a la apreciación o jerarquización del riesgo que implica la situación denunciada, un oficio judicial para obtener el diagnóstico de situación y poder definir los pasos a seguir. La intervención del poder judicial, con medidas relacionadas con el medio ambiente, es relevante. Al dictaminar sobre la adecuación o inadecuación de las formas de intervención en un territorio, sobre la implementación de tecnología o el monitoreo de las emisiones ambientales, o haciéndose eco de la protesta social, el poder judicial obliga al ejecutivo y al legislativo a intervenir para fiscalizar o modificar los elementos relativos a la condición de amenaza identificada.

Los participantes en este proceso (ONG, científicos, técnicos gubernamentales y políticos en cuanto productores o usuarios de la información sistematizada) destacan de manera positiva la realización del diagnóstico y el trabajo de las mesas de diálogo, pues entienden que se trata de “un paso intermedio para ir transparentando” los problemas socioambientales con la finalidad de encontrar soluciones (entrevistas con investigadores y técnicos gubernamentales, 2011).

Como resultado de este proceso de movilización social por los problemas medioambientales, además de incorporar el tema en el diálogo intersectorial, surgieron medidas concretas desde los tres poderes de gobierno de la CABA (y de los gobiernos involucrados en el AMBA). Desde el legislativo, con la creación de leyes ambientales; desde el ejecutivo, con la implementación de programas especiales, y desde el judicial, al considerar los problemas planteados por la población en situación ambiental crítica. En los inicios del nuevo milenio comenzó a calar la idea de que corresponde al gobierno la responsabilidad de monitorear, controlar y formular medidas públicas en la materia.

En cambio, actualmente el ejecutivo de la CABA considera que el control debe ejercerlo el ciudadano individual, quien, a través de denuncias (individuales) o mediante mediciones voluntarias, identificaría las fuentes de emisiones (Thibaud, 2010). Todo ello implica delegar el control de los vehículos que circulan por la ciudad, que le correspondería ejercer y monitorear al Estado.

b) Agenda local y compromiso internacional

La evolución planteada respecto de la incorporación del tema de la contaminación del aire, centrada aquí en la CABA, puso de manifiesto el peso de la agenda internacional acerca del impacto de las ciudades en la problemática del cambio global, así como la importancia que el medio ambiente tiene para los actores sociales locales, que pueden movilizarse y modificar los lineamientos de la política pública.

Al definir la calidad atmosférica en los ámbitos locales mediante políticas de mitigación del cambio climático, lo que implica la reducción de emisiones GEI (IPCC, 2007), los marcos para las intervenciones (políticas) quedaron subsumidos en las políticas de adaptación al cambio climático. Así, las medidas que se proponen solo responden a la problemática de la mitigación, es decir, la reducción de GEI. Con ello, la gestión política deja de lado su compromiso de aplicar medidas encaminadas a paliar los efectos cotidianos sobre la salud de quienes trabajan y viven en la ciudad.

c) Incertidumbre, interdisciplinariedad y diálogo

La ciencia investiga los riesgos identificando las incertidumbres de sus productos; la política gestiona en condiciones inciertas, afectada por el pasado y con rumbo hacia futuros desconocidos. Reconocer la incertidumbre, tanto científica como política, permite introducirse en la complejidad y manejarla (Funtowicz y De Marchi, 2000; Natzenon 2007). Se trata de una complejidad que se manifiesta en lo global y se resuelve en lo local, lo sectorial, lo particular; de ahí que cobre sentido reconocer la cultura específica de cada uno de los actores sociales que producen y sistematizan la información en función de sus prioridades prácticas: por ejemplo, producir artículos científicos; diseñar e implementar proyectos de investigación y programas o proyectos de acción política; sancionar legislación, normativa y reglamentaciones; gestionar los riesgos sociales.

146
La incertidumbre apunta a un escenario social en el que convergen saberes producidos por diferentes experiencias y formas de sistematizar y jerarquizar los datos con los que se construye la información. Sin embargo, no es fácil alcanzar esa convergencia. En el caso de problemas complejos como los socioambientales y, más particularmente, en el caso de la contaminación del aire y el cambio climático mundial persisten, a pesar del diálogo y la colaboración existente entre científicos, técnicos gubernamentales y funcionarios políticos, algunos obstáculos para la transferencia de conocimientos que permitirían dar con las soluciones necesarias. Esos obstáculos limitan la relación que se establece entre los diferentes actores involucrados en la investigación y la gestión, y amplifican las incertidumbres y, con ello, el riesgo social.

En este contexto, de lo que se habla es de la falta de certeza respecto de lo que cada interlocutor comprende durante el diálogo intersectorial e interdisciplinario, a partir de preguntas, resultados y nuevas preguntas que van apareciendo en los diferentes campos de conocimiento científico, político y cultural (Murgida, 2012). Así, es clave la comunicación entre las posiciones derivadas de los diferentes campos de conocimiento. Y no se trata solo de un problema de formas, de lenguaje o de comunicar mejor o peor; se trata de una cuestión de contenidos: reconocer las incertidumbres, identificar los intereses parciales y explicitar los valores en juego. Es necesario saber cómo “el otro” construye su conocimiento.

No es sencilla la interacción entre los diversos actores de la problemática del aire urbano en torno a situaciones o dominios de fenómenos específicos, ya que durante el proceso surgen dificultades tanto para las prácticas como para el diálogo. Parafraseando a R. García (2001), esas situaciones o dominios de fenómenos quedan parcializados como dominios incomunicables. De acuerdo con cada dominio disciplinar, práctico o político, las caracterizaciones del problema resultan diferentes. Sin embargo, es común que esa diferencia no trascienda y cristalice en un acuerdo transdisciplinario. Las lecturas de los resultados obtenidos por las otras disciplinas o sectores involucrados -en términos de poder- son de una valoración negativa y, por lo tanto, descalificadora. A partir de las distintas experiencias de interacción científico-política mencionadas por nuestros entrevistados en torno a la cuestión de la calidad atmosférica de la ciudad, las autoras del presente capítulo detectaron que existen valoraciones mutuas que funcionan como limitaciones y que dificultan el intercambio.

Los científicos y profesionales dicen, al referirse a los políticos, que “hace falta diálogo”; que “se necesita traducción entre la ciencia y la política”; que “los políticos están tomando decisiones con técnicas muy débiles”; que “si bien es un tema político, tiene que tener un sustento técnico muy fuerte y bien planteado, para que las decisiones políticas realmente sean eficaces”, y que “hace falta integrar este problema dentro de la idea de planificación”.

En el sector institucional gubernamental encontramos dos tipos de juicio valorativo: el de los técnicos de carrera y el de los funcionarios políticos.

Los técnicos de carrera plantean cuestiones vinculadas a la formulación de medidas que den visibilidad a su sector dentro del ámbito institucional: “la información que brindan los científicos es relevante, pero a veces no sabemos cómo transformarla en acciones”; “a veces no sabemos dónde se encuentra la información adecuada para comprender el tema”; “es necesario generar espacios de participación ciudadana” y “elaborar planes estratégicos” (entrevistas con funcionarios técnicos, 2010-2011). Algunos funcionarios se quejan de que la ciencia subestima la capacidad de los “técnicos políticos”, algo que ocurre cuando los científicos presentan informes que no aportan las pruebas de la construcción de los resultados o, en otros casos, cuando el medio de comunicación son publicaciones con lenguajes comprensibles solo dentro del campo científico, lo que dificulta su comprensión por parte de los que pertenecen a otro campo del saber. Por ello, los técnicos de carrera gubernamentales del sector ambiental celebran la posibilidad de organizar encuentros entre científicos y políticos, en los que se puedan efectuar ajustes que tengan en cuenta las necesidades de ambos (por ejemplo, unidades o escalas para construcción de datos) en lo relativo a problemas en los que se pueden aplicar los resultados, facilitando así su empleo como información legítima en el campo de la toma de decisiones. Como se señalaba en una
entrevista: “Los principales problemas son que falta difusión y que la información muchas veces está en una escala que no nos permite tomardecisiones. Hay un mix entre la información que me falta o que tengo en un idioma que no puedo entender, o no tener las herramientas sin saber con quién tengo que trabajar para poder hacer algo” (entrevistas con funcionario político y técnicos gubernamentales, 2011).

De todo ello cabe inferir que en la vinculación entre el político y el científico, el “técnico” o el personal de planta -formado y capacitado- desempeña el papel fundamental de “mediador” (Guebel, 1997). Los “técnicos son mediadores entre los científicos y los políticos” y que llevan a cabo un trabajo invisible, pero tienen un bagaje científico y político necesario para realizar la “traducción” de un campo a otro, sobre todo si se tiene en cuenta que los funcionarios políticos permanecen menos tiempo en sus cargos.

En cambio, los funcionarios políticos se centran en los elementos que constituyen la agenda política y en los que provocan un impacto en la sociedad. Los hechos políticos incluyen desde encuentros públicos intersectoriales hasta acuerdos interinstitucionales para el desarrollo de proyectos que, más allá de la atención que prestan al problema ambiental puntual, se constituyen en hechos significativos y visibles: “Es necesario generar impacto en la sociedad a través de los medios de comunicación”, “la difusión de estas interacciones garantiza que la sociedad se entere de los cambios en la legislación o en la planificación”; “si no se difunden los cambios, estos quedan meramente como hechos formales”.

En el análisis de las valoraciones mutuas entre ciencia, técnica y política destacan como relevantes:

• el reconocimiento de la incertidumbre respecto de la causalidad y los efectos del fenómeno;
• las interpretaciones de los hechos y procesos con las herramientas propias de cada dominio de conocimiento, y
• la difícil lectura e incorporación de los resultados científicos en las medidas políticas.

Sin embargo, más allá de las dificultades reconocidas de la relación, los tres actores señalan la necesidad y la posibilidad de diálogo. En ese sentido, el trabajo realizado por SAEMC concitó el interés de diversos técnicos gubernamentales, que a su vez lograron interesar al funcionario político de turno para incorporar los resultados de la investigación en la generación de lineamientos de políticas locales.

Los diálogos y las interacciones desde el inicio del proyecto de investigación pusieron de manifiesto la importancia de aplicar la Ley N° 1.356/2004 de calidad atmosférica, que en su artículo 32 dice que los vehículos deberán estar sujetos a la revisión técnica periódica para controlar la emisión de contaminantes. En términos formales la ratifican y destacan: su obligatoriedad para los ciudadanos, reconociendo que la responsabilidad del control debe quedar en manos de la institución gubernamental activa -en este momento, la Agencia de Protección Ambiental-. En términos sociopolíticos resulta interesante el planteo institucional de desterrar la idea naturalizada de que Buenos Aires es una “ciudad limpia”, que ha dilatado la acción política en la materia: “En comparación con ciudades como México, D.F. o Santiago, cuyas condiciones topográficas no favorecen la limpieza de los contaminantes atmosféricos, existe en la CABA una percepción ambiental de ‘ciudad limpia’, que debería revisarse y que ha promovido una escasa o nula tradición en monitoreo y gestión de la calidad del aire” (Agencia de Protección Ambiental, 2008, pág. 21).

En los espacios de interacción entre tomadores de decisiones, técnicos gubernamentales y científicos suele ponderarse la instancia de “encuentro” y se plantea de manera propositiva la necesidad de generar lineamientos políticos ordenadores: planes estratégicos o planificaciones integradas que tomen en cuenta la multicausalidad del fenómeno, así como la diversidad de efectos y afectados por dichos efectos. Pero eso ¿cómo se consigue?
d) **Voluntad política del gobierno**

Uno de los temas medulares de la gestión pública, en general, y de la gestión del riesgo, en particular, es “la política y sus modos de hacer”\(^{30}\), es decir, establecer, desde el Estado, lineamientos de acción que sean aceptados por los distintos sectores de la sociedad, lineamientos que se expresan, según los actores consultados, con el término “voluntad o decisión política”\(^{31}\). Este planteo alude a las características que definen el “poder” y la “política” para imponer estilos de gobierno y modelos de desarrollo, una atribución de significados que implica una interpretación de las necesidades e intereses sociales, la atribución de valor social y político y, a partir de ello, una puesta en acción.

La “voluntad política” como puesta en acción se manifiesta en medidas concretas de adaptación y mitigación, ya para reducir la vulnerabilidad social a la contaminación atmosférica, ya para reducir el impacto de esta sobre el clima. La materialidad de dicha voluntad se manifiesta en la obtención y asignación de recursos políticos y públicos, tanto en materia de personal como de financiamiento, para llevar adelante o dar continuidad a proyectos o líneas de trabajo que aportan soluciones a la problemática social y ambiental. Un buen ejemplo es el ya mencionado caso de la cuenca Matanza-Riachuelo, donde queda claro que la voluntad política no es un acto individual, sino una construcción de la dialéctica del poder: la combinación entre la presión social y la intervención de la justicia mueve a las instituciones del poder ejecutivo. En palabras de una persona entrevistada (2012): “… cuando se habla de la voluntad política, la voluntad es débil, porque va a depender de un tipo (una persona, un individuo)... En consecuencia, hay que empoderar a los actores del desarrollo para que provoquen las respuestas, y en definitiva es allí donde está la exigencia del nivel local, que es el que se relaciona de mejor manera con la ciudadanía; cuando hablo de esto, hablo de los municipios, de poder establecer la base de la planificación”.

Asimismo, siguiendo a Sánchez (2012), la existencia de algunas prácticas legislativas hace visible la voluntad política de reducir la contaminación del aire urbano. No obstante, la falta de reglamentación de la ley y la escasa o nula consolidación de equipos técnicos de gobierno que la implementen y controlen, contradicen esa voluntad en los hechos. Así, los técnicos que trabajan en la gestión y los científicos que estudian el tema subrayan que cuando “hay decisión política” se avanza con procesos concretos (proyectos, investigaciones, relevamientos y monitoreo), mientras que, cuando “no hay decisión política” que apoye un tema ya incluido en la agenda, se desmantelan equipos de trabajo, se abandonan proyectos en marcha aunque sean exitosos y, con ello, se reduce la capacidad institucional de gestión.

En el principio de toda acción se encuentra la voluntad política, por ello, aunque el tema esté institucionalizado y existan equipos de técnicos formados “…si no hay decisión política, estos temas quedan estancados” (entrevistas técnicos gubernamentales, 2011-2012). En ese sentido, conseguir una gestión de riesgos (local, integral, intersectorial, estratégica) que arroje buenos resultados y que influya en las condiciones de vida de una sociedad dada implica un objetivo difícilmente alcanzable a corto o mediano plazo, lo que para el político supone desplegar su capacidad de formular propuestas y medidas que no desaparezcan cuando se acaba su mandato, constituyéndose en lo que hoy se denomina una política pública de Estado. Sin embargo, para el político se trata de una contradicción y un condicionante: “Es difícil pensar en el largo plazo, cambian los gobiernos, estos tienden a gestionar en el corto plazo (…). Pensar en largo plazo modelos de crecimiento de la ciudad, estamos muy lejos de discutir eso, son objetivos lejanos. ¿Hoy tengo que pelarme con sectores importantes para mejorar la situación de los que tienen en generaciones futuras? Si estoy en la gestión, no me conviene” (entrevista con funcionario técnico, 2011).

31 El término “voluntad política”, se utiliza como “categoría nativa” por los sujetos que participan de este proceso. El término “voluntad política general” proviene de Rousseau (1762), que pensaba que el Estado debe ser dirigido por la voluntad política general del pueblo, que es la suma de los intereses que el pueblo tiene en común.
El “tiempo político” (Palmeira y Heredia, 1995), el de la ejecución y la gestión en el Estado -por parte de los organismos del poder ejecutivo del nivel de que se trate-, es un tiempo marcado por hechos políticos, por la respuesta a demandas, y condiciona el tiempo de permanencia del político en el cargo y es condicionado por él32. Los proyectos o las decisiones suelen dejar de funcionar cuando el político se retira de su cargo, un hecho que los priva de la posibilidad de ser proyectados como estrategias de Estado (local, provincial o nacional). Este aspecto de la lógica política de la discontinuidad incide con fuerza en la gestión, pues compele a los tomadores de decisiones a “generar hechos políticos” con “impacto social” inmediato, es decir, capitalizables en el tiempo que dura su mandato —generalmente, cuatro años—.

e) **Institucionalización y formación de equipo técnico**

La gestión pública da cuenta de los lineamientos gubernamentales, que se expresan en medidas de gobierno, lideradas ambas por los funcionarios políticos y ejecutados por funcionarios técnicos, también llamados “gubernamentales”, “de carrera” o “de planta”33. En esos funcionarios confluyen la estabilidad laboral y la formación profesional, por lo que su actuación trasciende los sucesivos gobiernos.

El funcionario técnico suele contar con una formación de base científica. Esta cualidad, junto con la experiencia y la continuidad en el cargo, le permitirían garantizar la continuidad de un proyecto, el manejo de información y el conocimiento del tema de que se trate, aproximándolo al trabajo científico. Por ello, en el marco de la relación ciencia-política, los científicos subrayan que con “un funcionario (político) uno sabe que tal vez dentro de dos años no esté. Con un funcionario de planta es más fácil trabajar en procesos más largos y armar cosas” (entrevistas con investigadores y técnicos gubernamentales, 2011).

No obstante, la “oportunidad” que brinda la estabilidad en el cargo queda obturada cuando no hay voluntad política para sostener un programa iniciado en administraciones anteriores. En este último caso, el técnico se encuentra limitado para actuar y concluir un proceso, e incluso se disgregan equipos de trabajo, no se aprovechan los resultados obtenidos o no se homologan las metodologías propuestas y desarrolladas (Barrenechea, Natenson y Murgida, 2005).

En el caso de la gestión del aire en la CABA, se puede señalar que hay problemas en la continuidad de la aplicación y el seguimiento de las políticas ambientales, a consecuencia de un proceso de discontinuidad de la voluntad política a pesar de la continuidad técnica. El hecho de que la CABA fuese la primera ciudad que incorporó el monitoreo del aire en América Latina y hoy sea una de las que registra un mayor atraso al respecto pone en evidencia esa discontinuidad.

En síntesis, la institucionalización de las medidas de gobierno dirigidas a resolver problemas socioambientales como el de la contaminación del aire implicaría la existencia de equipos técnicos capacitados, la continuidad temporal de un proyecto, el diálogo con la ciencia y voluntad política (en la dialéctica poder-demanda social). En ese esquema, es esencial la disponibilidad de datos fiables.

f) **Continuidad de las medidas de monitoreo, procesamiento y análisis de datos**

Como ya se ha señalado, las valoraciones de los actores involucrados en esta problemática funcionan como limitaciones para el diálogo. Trascender esas limitaciones significa reconocer los discursos de los demás y las propias incertidumbres. Por otra parte, las entrevistas realizadas permitieron a las autoras identificar otro tipo de limitaciones que remiten a la “calidad de la información” y el “acceso a los datos”.

32 El político profesional, que ha sido designado por otro político, es decir, que no accede a su puesto por votación de la población, siempre se encuentra en situación de “disponibilidad”, lo que implica que puede continuar o no su gestión y sus proyectos (véase Weber, 1994).

33 Estas categorías aluden a distintos aspectos o situaciones, pero profundizar en ellas no es objeto de este trabajo.
Respecto a la calidad de la información, en las entrevistas se dice que “hay que monitorear el monitoreo”. El monitoreo, como está planteado, no termina de dar acabada cuenta de la calidad del aire de la ciudad ni de los efectos sobre la salud de la población interesada, ya que los resultados son muy diferentes, por ejemplo, si el dato se toma a ras del suelo o a la altura de la nariz; si se toma en horas pico o en las de baja circulación de vehículos, si se toma en calles con viento o en calma, si hay o no circulación de camiones. En ese sentido, algunos médicos subrayan que una de las medidas posibles sería controlar la medición no solo de los componentes de los gases contaminantes, sino también de los lugares e instancias de toma de datos.

En relación con el monitoreo de la salud, existe un sistema de vigilancia epidemiológica que tiene por objeto el seguimiento estadístico, la recolección sistemática, el análisis y la interpretación de datos sobre casos relacionados con las enfermedades de notificación obligatoria, y principalmente con enfermedades transmisibles. Este sistema contempla la posibilidad de recolectar la información sobre casos agudos, pero no incluye las consultas sobre enfermedades respiratorias que se realizan en consultorios externos. De esta manera, los casos no quedan registrados (entrevista con investigadores 2011).

Todos los actores sociales entrevistados concuerdan en que hay una gran producción de datos por parte del gobierno de la ciudad. No obstante, la dificultad reside en que esos datos no están sistematizados ni analizados, en que no son fiables o en que no se recaba información específica para vincular contaminación del aire con salud.

El acceso a los datos y la obtención de estos presentan serias dificultades. El acceso institucional y público es una excepción y no una regla. Los datos se consiguen mediante la buena voluntad de “una” persona a la que se accede por relaciones personales. En ese sentido, lo “personal” y “la construcción de relaciones de reciprocidad y confianza” entre los interesados -el técnico y el científico, o entre técnicos- pasa a ser un factor muy importante. La producción de los datos, su difusión y las relaciones sociales en torno a ellos pasan a formar parte de la “incertidumbre institucional”. La informalidad de ciertos mecanismos de acceso a los datos en las instituciones otorga un carácter central a las relaciones personales, los llamados “contactos”. Esa misma informalidad se expresa: a) en los datos mismos, pues pasan a ser objeto de disputa y poder; b) en la falta de mecanismos institucionales de consulta de datos, y c) en la apropiación privada de los datos, un hecho que da lugar a la venta de sus derivados -la interpretación y la evaluación- en el “mercado de la consultoría”.

La investigación del proyecto SAEMC puso de manifiesto algunos aspectos clave de la producción y el uso de los datos: “Aunque inicialmente el trabajo se planteó el objetivo de evaluar el efecto de la contaminación sobre la salud de la población, en el momento de la recolección de datos resultó evidente que la información disponible sobre calidad del aire no permitía hasta ese momento hacer un análisis muy detallado y robusto de esta relación. Por ese motivo, la investigación se centró en la correlación entre temperaturas y mortalidad, por la cual se dispone de datos sumamente confiables para un período de cinco años. Además, y utilizando la misma metodología, se analizó la información relativa al nivel de monóxido de carbono, único contaminante atmosférico del cual existen datos diarios, solamente para una fracción de ese periodo” (Abrutzky y otros, 2012). Consecuentemente, se usó el CO como indicador o variable sustitutiva de una gama de contaminantes.

La utilidad político-estratégica de la producción de datos, orientada más hacia el cumplimiento de acuerdos internacionales que hacia la consideración del impacto en la salud humana y la calidad de vida, también presenta incertidumbres resultantes de las políticas implementadas para monitorear y mitigar los GEI, por ejemplo, los generados por el uso de GNC (gas natural comprimido): “…pero si incorporamos el nitroso del gas natural, cuando no hay control de emisiones, la cantidad de óxido de nitrógeno que se emiten son importantes; entonces el nitroso es alto, y como es un gas de efecto de invernadero que tiene un potencial de calentamiento global muy alto, en realidad en Buenos Aires

no sabemos si el gas natural redujo las emisiones o no, porque las incertidumbres para medir óxido de nitrógeno son muy altas” (entrevistas con investigadores en el taller interdisciplinario del Instituto Interamericano para la Investigación del Cambio Global, 2012).

A partir de los relatos de los científicos involucrados en el proyecto de investigación de referencia, se puso de manifiesto que las interacciones entre ellos y los funcionarios permitieron obtener los datos necesarios para llevar a cabo las investigaciones sobre el aire, mientras que otros datos los generaron los propios equipos del proyecto. Finalmente, también quedaron en evidencia los vacíos de información, que no solo limitaron las investigaciones científicas, sino también la posibilidad de actuar desde la gestión para reducir eficazmente la vulnerabilidad social a las emisiones gaseosas.

Los vacíos de información pueden considerarse obstáculos. No obstante, su reconocimiento se convirtió en una oportunidad cuando, ante la demanda de datos específicos, los tomadores de decisiones comprendieron qué solicitaban los científicos y se interesaron en buscar las formas de actualizar los sistemas de vigilancia actuales en función de las propuestas científico-técnicas. Con ello, a la relevancia de los datos se sumó la cuestión metodológica, es decir, la necesidad de tomar y construir datos de acuerdo con criterios acordados a escala regional y orientados hacia el monitoreo, a fin de reducir los riesgos de la contaminación del aire para la salud humana, y que derivan en el aumento de la morbidad y la mortalidad por afecciones cardiovasculares agudas. Como señalan investigadores del sector salud, también inciden en otras enfermedades menos graves, como las alergias respiratorias, que afectan a la vida cotidiana.

De todo lo señalado anteriormente, las autoras entienden que el proyecto contribuyó a actualizar la comunicación entre los sectores político, de gestión y científico, en función de una novedad en la interacción, a saber, la redefinición de los datos que se necesitan para realizar diagnósticos y, a partir de allí, encontrar su conexión con las políticas de Estado: transporte, salud y ordenamiento territorial. El diálogo del proyecto permitió determinar la importancia de monitorear incluso las emisiones derivadas de cambios tecnológicos que se consideran local o internacionalmente exitosos, como el gas natural comprimido, pues hasta ahora su éxito se había determinado en función de los GEI, no de su efecto en la salud. Este reconocimiento permitiría abrir una nueva línea de investigación científica con vistas a resolver un problema que es, a la vez, cotidiano y estratégico, y, con ello, introducir un elemento de convergencia entre una preocupación científica y una práctica considerada positiva por el gobierno.

Este punto pone de relieve que los tres sectores (político, técnico y científico) necesitan contar con datos. No obstante, para seleccionar la clase de datos que se ha de tomar y la manera de sistematizarlos, es necesario acordar un objetivo estratégico común entre el “interés científico” y el “interés político”. En ese sentido, la toma de datos oficial contribuye al avance de la investigación científica, del mismo modo que los resultados científicos ayudan a conocer el riesgo por contaminación.

D. Interacción ciencia-política: reflexiones finales

En el curso del presente trabajo se puso de relieve que una de las cuestiones significativas para abordar el tema de la contaminación del aire urbano de manera intersectorial y productiva para la población, es tener en cuenta la incertidumbre que tiñe la comunicación misma de los conocimientos producidos.

En este marco de incertidumbre que supone tomar decisiones políticas, los actores ponderan, por un lado, la interconsulta entre sectores involucrados como “espacios para construir respuestas”; por otro, reconocen que existen obstáculos al diálogo y la colaboración que esos sectores entablan. Dichos obstáculos o limitaciones afectan a la comunicación del conocimiento y a la construcción del problema político, social o científico que plantea cada sector, algo que luego se reflejará en la aplicación de políticas públicas.
A partir de los juicios que se plantean a la hora de analizar reflexivamente la relación ciencia y política con los diferentes tipos de actores, fueron poniéndose de manifiesto los elementos que configuran las limitaciones inherentes al proceso de comunicación establecido en la interacción. Por ello, más allá del lugar común que representa la idea naturalizada acerca de “la falta de diálogo o la necesidad de traducción entre la ciencia y la política”, cabe lanzar otra pregunta: ¿cómo son la relación y la cooperación entre ambos sectores? Al destacar la característica de la cooperación, nos cenramos en la oportunidad que significaba poder explorar ese tipo de relación.

Se debe reconocer que cada campo configura sus propios mecanismos y modalidades para producir, sistematizar, explicitar y aplicar el conocimiento. Por un lado, la investigación científica representa el conocimiento formal, legitimado por la comunidad de pares mediante papers. Por el otro, el campo de la política y de la gestión también produce conocimiento relevante, pero con el acento puesto en la aplicación (Roux y otros, 2006; Functowicz, Ravetz y Aguilera, 1993) que se explicita en la legislación y sus reglamentaciones, en las bases de datos, los informes de gestión, los proyectos o programas de intervención.

A partir de ahí, una de las cuestiones que emergen como problema o tópico a abordar en cuanto parte de la construcción de la interacción es el “saber hacer”, un conocimiento que existe de manera tácita (Polanyi, 1983) y que hunde sus raíces en la acción, en la experiencia y en la constelación de representaciones sociales e ideológicas propias de cada sociedad o de cada sector de esa sociedad (Bourdieu, 2000). Como lo señalan Roux y otros (2006), la gestión del conocimiento en la interacción entre campos sociales (en este caso, el científico y el político) suele soslayarse a la hora de plantear las barreras o limitaciones al desarrollo de la cooperación.

Una de las claves se encuentra en el espacio de interacción que, por lo general, está centrado en el intercambio de resultados, es decir, de la información producida y validada en cada uno de los campos. Esta operación, como lo señala Roux y otros (2006), requiere la transferencia de los “contextos” en los que se desarrolla el conocimiento de cada una de las partes que interactúan, lo que implica desnaturalizar la información superando cierta “incapacidad entrenada” (Millar y Morris, 1999) para comprender y relacionar los patrones con los que se produce el conocimiento desde otras perspectivas, sean estas disciplinas científicas diferentes o distintas prácticas de gestión política.

Gran parte de la bibliografía que aborda la relación entre la ciencia y la política para la gestión pública, y, en especial, para la planificación del territorio y sus recursos, denomina esos espacios de interacción como “interfaz” o enlace crítico entre formas de conocimiento (Roux y otros, 2006; Benda y otros, 2002; Rogers, 1998). Esa denominación se completa con la noción de “ciencia posnormal” (Funtowicz, Ravetz y Aguilera, 1993), que apunta a superar los paradigmas disciplinarios o prácticos en la necesidad de articular las preguntas, los objetivos y la construcción del conocimiento de manera integrada, tomando en cuenta los intereses parciales, pero legítimos, de todos los actores involucrados. Con estos considerandos, podemos definir “interfaz” como una relación social entre comunidades o culturas de conocimiento que, para dar lugar a un salto cualitativo, necesitan, como señalan muchos autores, un espacio institucional, pero cuya premisa es la explicitación de las formas propias de conocimiento de cada sector involucrado, para luego derivar, desde ahí, las preguntas y dar las respuestas de manera conjunta.

A fin de conseguir dicha articulación en términos institucionales, destacamos la profundización de la relación social a mediano y largo plazo, para permitir el establecimiento de lazos de confianza, el surgimiento de liderazgos en la articulación de conocimientos científicos y prácticos, y la formación constante de nuevas capacidades para la gestión del conocimiento (Roux y otros, 2006). En ese sentido, cuando se plantea la institucionalización de la interfaz, la novedad radicaría en fortalecer los equipos técnicos gubernamentales y articularlos a otros equipos productores de conocimiento en torno de tareas específicas, a partir del propio planteamiento de objetivos y la unificación de elementos conceptuales y metodológicos. Los mecanismos prácticos para llevarlo a cabo incluyen la capacitación interdisciplinar en talleres orientados a abordar y resolver problemas reales, es decir, encuentros donde cada uno de
los tipos de actores participantes pueda priorizar y jerarquizar sus problemáticas y planes de acción de manera conjunta y complementaria con los otros.

Como resultado de la investigación aparecen dos líneas adicionales de reflexión que atraviesan las diferentes contaminaciones del aire (la de la salud y la de los GEI) y los datos necesarios para su conocimiento y gestión: la articulación de tiempos diversos y la inclusión de procesos participativos.

En estos problemas ambientales complejos conviven los diversos “tiempos” de los actores: el de la acción política, el de la investigación científica, el de exposición a la contaminación y sus efectos en la salud, y el de introducción de un tema en la agenda pública.

Una característica del tiempo político es su corta duración y su discontinuidad en la ejecución de las políticas. En cambio, en el tiempo científico una constante es la necesidad de contar con largos períodos. Para expedirse acerca de la calidad del aire de la ciudad y de su relación con la salud, la investigación científica necesita datos que reflejen la evolución en el tiempo: series temporales de datos de factores contaminantes, de enfermedades y muertes relacionadas con esos factores, entre otros.

En relación con el tiempo de exposición a la contaminación y sus efectos sobre la salud de la población, pueden identificarse tres cuestiones, a saber, la relativa al efecto a corto plazo, según el cual, durante las horas de mayor exposición a las concentraciones cruciales de contaminantes como el CO, se producen afecciones a la salud que se manifiestan incluso dos días después de dicha sobreexposición; otra que se refiere a los efectos que la contaminación produce a largo plazo sobre la salud, y que dan lugar a un incremento de “costos” o tiempo laboral perdido tanto para el sector privado como para el público, que deben hacerse cargo de afecciones como rinitis, asma y alergias; en tercer lugar, la necesaria toma de datos de larga duración para una red representativa de localización en distintos lugares de la ciudad y diversificada en cuanto al tipo de muestras que se obtienen.

De este modo queda esbozada la cuestión en la que conviven los tres tiempos, que entran en contradicción al no estar articulados. La toma de datos debería responder al conocimiento de la química atmosférica y sus impactos en la salud y, simultáneamente, a los efectos de las medidas públicas de regulación de las emisiones.

Por su parte, la participación abre otro campo de reflexión en el que se solapan y entrecruzan las “necesidades urgentes que hay que solucionar”: por un lado, las derivadas de la reducción de los espacios de conflictos y de presión social; por otro, la necesidad de reducir los procesos peligrosos; finalmente, comunicar el riesgo y sus incertidumbres para mejorar las percepciones públicas de la contaminación. En este contexto hay que dejar clara la diferencia entre las preocupaciones mundiales focalizadas en emisiones de CO₂ y la contaminación atmosférica que afecta directamente a la salud de la población local. Ambas son importantes, pero requieren estrategias políticas y de comunicación diferentes.

Bibliografía

____ (1982), Las formas elementales de la vida religiosa, Madrid, Ediciones Akal.

IAI (Instituto Interamericano para la Investigación del Cambio Global) (2010), “Calor, polvo y gente. Los sistemas de información geográfica muestran la variación del riesgo para la salud provocado por la combinación de fenómenos extremos del tiempo con la contaminación en grandes ciudades de América Latina”, Instantáneas de la Ciencia, Nº 6, São José dos Campos.

La presente publicación es un esfuerzo conjunto del Instituto Interamericano para la Investigación del Cambio Global (IAI) y la Comisión Económica para América Latina y el Caribe (CEPAL). El IAI es una organización intergubernamental dedicada a la búsqueda de los principios de la excelencia científica y cooperación internacional, con el fin de mejorar la comprensión de los fenómenos del cambio global y sus implicaciones socioeconómicas. La CEPAL es una de las comisiones regionales de las Naciones Unidas dedicada a contribuir al desarrollo económico de América Latina y el Caribe, coordinar las acciones encaminadas a su promoción y reforzar las relaciones económicas de los países entre sí y con las demás naciones del mundo, con el objetivo de promover el desarrollo social.

En esta publicación se hace hincapié en la urgente necesidad de informar a los gobiernos de las ciudades y sus habitantes acerca de las consecuencias del cambio climático, con el propósito de contribuir a vincular las tareas actuales de planificación, construcción y gestión del espacio urbano con la formulación de estrategias locales para hacer frente a este fenómeno. La búsqueda de mejores alternativas de desarrollo para América Latina en el siglo XXI depende de la capacidad de construir ciudades más eficaces, inclusivas y resilientes al cambio climático.

El análisis de las maneras en que el cambio climático afecta a la operación de las ciudades o el modo en que las ciudades lo afectan contribuye a abrir opciones para el desarrollo sostenible. La prevención y la planificación son más eficaces y de menor costo que una mera reacción a los impactos del cambio climático. Cuanto más se retrasen esas acciones, mayor será su costo financiero, social, económico y ambiental y más se reducirán las alternativas para enfrentarlo. Por ello, la decisión de hacerlo a corto plazo es urgente y crucial.